

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Appendix H - Benefit-Cost Analysis for 2006 Master Plan Works on Upper Brown Hill Creek

WorleyParsons resources & energy

Rp301015-02356 – Brown Hill Keswick Creek SMP fg301015-02356-110802-fig_50yrMPWvsnoMPW.doc

Note: 50 year ARI depth mapping shown is for 2006 Master Plan Works with the works on upper Brown Hill Creek.

Depths > 0.5 metres are shown in blue.

50 YEAR ARI MAPPING <u>WITH</u> VERSUS <u>WITHOUT</u> THE 2006 MASTER PLAN WORKS ON UPPER BROWN HILL CREEK

about this man adapted from 2006 M ed as being subject t

which can occur as a result of localis action with catchme on Mile End and the in due to the effect of runoff from those area

in actual historical floods. Actual flood extents will orks, blockages of structures due to debris, further

ion of land affected for the specific level of risk and does not

when a pipe, channel or creek cannot carry the volume of wate

le in the floodplain. Flooding can be considered to be a natural event. Iten of flooding shown on this map is based on predictions of flood behaviour. Limitations to the information shown on this map and a scription of some concepts upon which it is based are set out in the following sections, sed that this map and the others in the series, will help promote public awareness of the flood problem in the Brown Hill and Keswick aking development in the areas of

ndent on the duration of any storm event. Ge ws the outer envelope of three storm events: one a 90 minute storm, one 6 hour and the other a 36 hour storm. These storm naximum flood extent in different parts of the catchment.

atchment.

urse nor should there be building over the w the basis that those responsible for its preparation and publication do not accept uffered by anyone as a result of the publication of the map and the notations on it

1 2000m

resources & energy

Rp301015-02356 – Brown Hill Keswick Creek SMP fg301015-02356-110802-fig_20yrMPWvsnoMPW.doc

LEGEND

- Additional properties subject to over-floor flooding if the works on upper Brown Hill Creek are removed from 2006 Master Plan
 - Additional areas of inundation if the works on upper Brown Hill Creek are removed from 2006 Master Plan

Council Area Boundary

Note: 20 year ARI depth mapping shown is for 2006 Master Plan Works with the works on upper Brown Hill Creek.

Depths > 0.5 metres are shown in blue.

20 YEAR ARI MAPPING WITH VERSUS WITHOUT THE 2006 MASTER PLAN WORKS ON UPPER BROWN HILL CREEK

about this man adapted from 2006 M ed as being subject to Parklands Creek and

which can occur as a result of localis ccur as a result of the interaction with catchmer d extents in the area between Mile End and the own due to the effect of runoff from those areas.

on actual historical floods. Actual flood extents will orks, blockages of structures due to debris, further

ion of land affected for the specific level of risk and does not Flood assessment for pa ysis by qualified and exp

when a pipe, channel or creek cannot carry the volume of wate

1 2000m

ters travel across the surface of the land potentially damaging property built upon the floodplain and potentially threatening the safety lein the floodplain. Flooding can be considered to be a natural event tert of flooding shown on this map is based on predictions of flood behaviour. Limitations to the information shown on this map and a scription of some concepts upon which it is based are set out in the following sections: ped that this map and the others in the series, will help romoter public awareness of the flood problem in the Brown Hill and Keswick the direct the series of the series, will help romoter public awareness of the flood problem in the Brown Hill and Keswick the series of the series of the series will help romoter public awareness of the flood problem in the Brown Hill and Keswick tert of the series of the series will help romoter public awareness of the flood problem in the Brown Hill and Keswick tert of the series will be the series will help romoter public awareness of the flood problem in the Brown Hill and Keswick tert of the series will be the series will help romoter public awareness of the flood problem in the Brown Hill and Keswick tert of the series will be the series will be the promoter public awareness of the flood problem in the Brown Hill and Keswick tert be the series will be the series will be the promoter public awareness of the flood problem in the Brown Hill and Keswick tert be the series will be the series will be the promoter public awareness of the flood problem in the Brown Hill and Keswick tert be the series will be the series will be the promoter public awareness of the flood problem in the Brown Hill and Keswick tert be the series will be the series will be the promoter public awareness of the flood problem in the Brown Hill and Keswick tert be the series will be rtaking development in the areas co

indent on the duration of any storm event. Generally shorter, n ases longer duration, but less intense ws the outer envelope of three storm events: one a 90 minute storm, one 6 hour and the other a 36 hour storm. These storm maximum flood extent in different parts of the catchment. lence of this the event of flooring shown may on occur across the entire area during any one storm event.

atchment. not occur across the entire area during any one storm even

ourse nor should there be building over the wa a distance of at least ten metres from a wat n the basis that those responsible for its preparation and publication do not accept suffered by anyone as a result of the publication of the map and the notations on it

LEGEND

- Additional properties subject to over-floor flooding if the works on upper Brown Hill Creek are removed from 2006 Master Plan
 - Additional areas of inundation if the works on upper Brown Hill Creek are removed from 2006 Master Plan

Council Area Boundary

Note: 10 year ARI depth mapping shown is for 2006 Master Plan Works with the works on upper Brown Hill Creek.

Depths > 0.5 metres are shown in blue.

WorleyParsons ŤŸ resources & energy

Rp301015-02356 – Brown Hill Keswick Creek SMP fg301015-02356-110802-fig_10yrMPWvsnoMPW.doc

10 YEAR ARI MAPPING WITH VERSUS WITHOUT THE 2006 MASTER PLAN WORKS ON UPPER BROWN HILL CREEK

Rp301015-02356 – Brown Hill Keswick Creek SMP fg301015-02356-110802-fig_500yrMPWvsnoMPW.doc

Note: 500 year ARI depth mapping shown is for 2006 Master Plan Works with the works on upper Brown Hill Creek.

Depths > 0.5 metres are shown in blue.

500 YEAR ARI MAPPING WITH VERSUS WITHOUT THE 2006 MASTER PLAN WORKS ON UPPER BROWN HILL CREEK

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Appendix I - Multiple-Criteria Assessment for Alternative Flood Mitigation Options for Upper Brown Hill Creek

Rating of Assessment Criteria

	Flood Mitigation Option	Key Information and Data	Significant Impacts / Comments	Reduction in Flooding Impacts	Technical Feasibility	Likely Community Acceptance	Water Quality and Reuse	Protection of Environmental Features	Improve Recreational Amenity	Opportunity to Improve Biodiversity	Approx. Cost of Works
	Upper Brown Hill Creek Detention										
A1	Flood control dams at Sites 2 & 4 (2006 Master Plan)	As for 2006 Master Plan. Dam 2 on north tributary is 20 metres height to spillway and 335 ML storage capacity and dam 4 on south tributary is 19 metres height with 60 ML storage capacity. Reduction in 100 year ARI peak flow from 26 to 13 m ³ /s at Scotch College.	Site 4 requires road access to be constructed. See notes for Site 2 in A2. Both sites are on private property and were subject to preliminary environmental and heritage investigations by GHD in 2008, which identified potential impacts that could be remedied. Visual impact may be an issue. Effective at mitigating peak rural flow over the catchment. Does not mitigate peak urban flow - with consequent flooding in Unley, spilling into West Torrens.	н	н	L	L	L	L	N	\$22 M
A2	Single flood control dam at Site 2	Height to spillway 20 metres. Reduction in 100 year ARI peak flow from 26 to 16 m ³ /s. Otherwise, as for A1.	Site 2 is located across two private properties, but with minimal impact in terms of land use. However, alternative access may need to be provided to substitute for loss of access route along the base of the valley. Preliminary investigations have been carried out (as for A1). Tillys Hill Road nearby is unaffected. Visual impact may be an issue. Mitigation impacts similar to that for A1, indicating that the dam at Site 2 provides a majority of the flow reduction afforded by the 2006 Master Plan dams.	н	н	М	L	L	L	N	\$14 M
A3	Single larger flood control dam at Site 2	Height to spillway 22.5 metres and 475 ML storage volume (42% increase). Reduction in 100 year ARI peak flow from 26 to 14.9 m3/s.	The height of a dam at Site 2 can be raised by several metres without dretracting from original dam 2 characteristics. This may be a more cost effective option than a second dam. However, additional mitigation benefits are minimal compared with the significant additional storage volume provided.	н	н	L	L	L	L	N	\$16 M
A4	Single flood control dam at Site 1	Height to spillway of 15 metres (smaller than original dam at Site 1 from 2005 Stage 1 Technical Report). Reduction in 100 year ARI peak flow from 26 to 11.4 m3/s. At increased spillway height of about 20 metres outflow can be reduced to about 5 m3/s.	The optimum site in terms of capturing runoff from a majority of the rural catchment - which provides better performance in reducing flows than for the Site 2 location. Situated in Brown Hill Recreation Reserve - but Park Management Plan refers to potential flood control dam. Visual impact may be an issue. Site 1 is generally more wooded than Site 2. Road relocation is likely to be required. Up to 3 or 4 private properties and dwellings may be affected by the spread of water stored temporarily behind the dam. Mitigation impacts similar and marginally better than for A1.	н	н	L	L	L	L	N	\$14 M
A5	Single (smaller) flood control dam at Site 1	Height to spillway of about 12 metres, with a storage capacity of about 90ML. Reduction in 100 year ARI peak flow from 26 to 19.5 m3/s.	As for A4, the optimum site also enables the dam to have a lower height than for the Site 2 location. The height of 12 metres is about the limit at which nearby houses would not be affected by the spread of water stored temporarily behind the dam. At peak outflow of 19.5 m3/s there may still be some localised flooding adjacent to creek upstream from Belair Road. Otherwise, the dam would reduce peak rural flows to a similar level as the peak urban flow at downstream locations.	н	н	М	L	М	L	N	\$10 M
A6	Multiple flood control dams (10 No.)	Same as Scenario 3 of 2008 AWE report - 10 basins with storage volumes from 15 to 150 ML and dam heights from 9 to 15 metres - to reduce 100 year ARI flow at Scotch College to 13 m3/s.	The cost and environmental impact of constructing multiple structures are higher than for other dam options for no greater benefits. Refer to AWE report for further details (AWE, 2008).	н	н	L	L	L	L	N	\$40 M
Α7	Multiple flood control dams (4 No.)	Same as Scenario 4 of 2008 AWE report - 4 basins with storage volumes from 60 to 170 ML and dam heights from 14 to 19 metres - to reduce flow at Scotch College to 13 m3/s.	As for A6.	н	н	L	L	L	L	N	\$27 M
A8	Proposal for flood control dams at Springwood Park Estate	3 potential sites as identified by property manager in 2011 with dam heights of 25, 20 and 15 metres, with a combined storage of up to 400ML. Peak 100 year ARI flow of about 19 m ³ /s at Scotch College.	As for A6; however, benefit in reducing downstream is not as great. Significant costs for property acquistion included.	L	Н	Н	L	L	L	N	\$50 M

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

H = High M = Moderate L = Low

DRAFT Rating of As

Rating of Assessment Criteria

	Flood Mitigation Option	Mitigation Option Key Information and Data Significant Impacts / Comments					Water Quality and Reuse	Protection of Environmental Features	Improve Recreational Amenity	Opportunity to Improve Biodiversity	Approx. Cost of Works
	Minor Detention Basins										
B1	System of weirs at Brown Hill Creek Recreation Reserve	Up to 9 weirs ranging from 3 to 7 metres in height, with total storage capacity of 80 ML. When used in combination with flood control dam at Site 2, the peak 100 year ARI flow at Scotch College would be about 14 m3/s	Would be effective only if used in combination with a flood control dam (Site 1 or 2), hence the potential High rating for flood reduction. Weirs would be configured to minimise encroachment into public space in the recreation reserve. Their overall advantage is that they could be relatively unobtrusive in the landscape.	М/Н	Н	М	L	L	М	N	\$9 M
B2	Caravan park flood control dam (adjacent McElligots Reserve)	Would have a maximum capacity of about 120 ML.	Offers reduced benefit compared with larger dams at Sites 1 or 2 and likely to require closure of the Caravan Park and will have associated social impacts.	м	н	L	L	L	Ν	N	\$10 M
B3	Basin at Mitcham Reserve	Maximum potential capacity of about 6.5ML.	Compared to volume of flow in 100 year ARI event ~ 450ML, this basin would have minimal benefit in reducing peak flows.	L	L	L	N	L	Ν	N	\$1 M
B4	Basin at Scotch College ovals	Maximum potential capacity of about 10ML.	As for B3.	L	L	L	N	L	Ν	Ν	\$1 M
В5	Five basins at Soldiers Memorial Gardens / Morris / Delwood Reserves	Maximum combined capacity of about 18ML.	Would require a levee bank system around each park which may be regarded as unsightly and would restrict ease of access. Available area and potential volume are too small to have any significant benefit in mitigating the peak rural storm. VDM Consulting (2010) reported on the detention potential for these areas, from which it can be concluded that any benefits would be minimal on a whole of catchment scale. A similar conclusion can be drawn for most options involving relatively small detention basins along the urban sections of the channel.	L	Μ	L	N	L	Ν	Ν	\$2 M
B6	Basin at Orphanage Park	Maximum potential capacity of about 14ML.	Would require a levee bank system around the park which may be regarded as unsightly and would restrict ease of access. Any benefit would be to mitigate the peak urban storm only and would have minimal benefit in mitigating the peak rural storm.	L	М	L	N	L	Ν	N	\$1 M
B7	Lower and bund Heywood Park	Maximum potential capacity of about 24ML.	As for B6.	L	М	L	N	L	N	N	\$1 M
	Channel Upgrades to Increase Capaci	ity									
C1	Muggs Hill Road to George Street	Culverts under Mitcham shopping centre (35 m3/s) and Belair Road (20-25 m3/s) have adequate capacity. Otherwise unlined / private property. Existing channel capacity is rated at ~18 m3/s.	Channel may be marginally under-capacity, subject to final configuration of any upper catchment detention. This needs further detailed analysis to confirm cost. Base case peak 100 year ARI flow is 26 m3/s. Choke point near Paisley Street with house built over the channel is a source of local break-out and flooding (refer D5). Otherwise, minor works may involve vegetation management and landscaping.	L	М	L	N	М	L	N	\$6 M
C2	George Street to Devonshire Street	Unlined / Private property. Existing channel capacity is rated at ~22 m3/s.	Likely to accommodate peak urban flow (subject to more detailed investigation), but not peak rural flow. Floodplain mapping (100 yr ARI) shows break-out in vicinity of George Street. George Street bridge is planned to be upgraded which may alleviate the situation. With George Street bridge upgraded, there is potential that breakout could occur at downstream bridges (refer D2 for additional bridge upgrade works that may be required).	L	Н	L	N	М	L	N	\$3 M
C3	Devonshire Street to Hampton Street	Unlined / Public reserve. Existing channel capacity is rated at ~22 m3/s.	The channel could be widened marginally, if necessary, by landscaping the banks.	L	Н	м	N	М	L	Ν	\$0.5 M
C4	Hampton Street to Cross Road	Unlined / Private property. Existing channel capacity is rated at ~22 m3/s - but this is inconsistent with evidence of breakouts in this section.	A recognised problem section. VDM Consulting (2010) confirmed the potential problem along this section and discussed acquisition of adjacent properties and use of the land as a retardation basin. Upgrade works would involve concrete linig to create rectangular section 4 m wide, or wider if upper catchment detention is not used.	М	н	М	N	М	L	N	\$2.8 M
C5	Cross Road to Orphanage Park	Unlined / Private property. Existing channel capacity is rated at ~22 m3/s to Malcolm St, then down to 17 - 20 m3/s. Upgrade works would involve widening channel by 1 to 2 metres.	Floodplain mapping evidence of breakout between Malcolm St and Regent St. Impracticable to increase channel width to accommodate maximum design flow. Feasible in places for excess flow to bypass creek channel. Costs excluded for bridge upgrades (refer D3).	М	М	L	N	М	L	N	\$8 M

C1	Muggs Hill Road to George Street	Culverts under Mitcham shopping centre (35 m3/s) and Belair Road (20-25 m3/s) have adequate capacity. Otherwise unlined / private property. Existing channel capacity is rated at ~18 m3/s.	Channel may be marginally under-capacity, subject to final configuration of any upper catchment detention. This needs further detailed analysis to confirm cost. Base case peak 100 year ARI flow is 26 m3/s. Choke point near Paisley Street with house built over the channel is a source of local break-out and flooding (refer D5). Otherwise, minor works may involve vegetation management and landscaping.	L	М	L
C2	George Street to Devonshire Street	Unlined / Private property. Existing channel capacity is rated at ~22 m3/s.	Likely to accommodate peak urban flow (subject to more detailed investigation), but not peak rural flow. Floodplain mapping (100 yr ARI) shows break-out in vicinity of George Street. George Street bridge is planned to be upgraded which may alleviate the situation. With George Street bridge upgraded, there is potential that breakout could occur at downstream bridges (refer D2 for additional bridge upgrade works that may be required).	L	Н	L
С3	Devonshire Street to Hampton Street	Unlined / Public reserve. Existing channel capacity is rated at ~22 m3/s.	The channel could be widened marginally, if necessary, by landscaping the banks.	L	н	М
C4	Hampton Street to Cross Road	Unlined / Private property. Existing channel capacity is rated at ~22 m3/s - but this is inconsistent with evidence of breakouts in this section.	A recognised problem section. VDM Consulting (2010) confirmed the potential problem along this section and discussed acquisition of adjacent properties and use of the land as a retardation basin. Upgrade works would involve concrete linig to create rectangular section 4 m wide, or wider if upper catchment detention is not used.	М	Н	М
C5	Cross Road to Orphanage Park	Unlined / Private property. Existing channel capacity is rated at ~22 m3/s to Malcolm St, then down to 17 - 20 m3/s. Upgrade works would involve widening channel by 1 to 2 metres.	Floodplain mapping evidence of breakout between Malcolm St and Regent St. Impracticable to increase channel width to accommodate maximum design flow. Feasible in places for excess flow to bypass creek channel. Costs excluded for bridge upgrades (refer D3).	М	М	L

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

H = High M = Moderate L = Low

Rating of Assessment Criteria

	Flood Mitigation Option	Key Information and Data	Significant Impacts / Comments	Reduction in Flooding Impacts	Technical Feasibility	Likely Community Acceptance	Water Quality and Reuse	Protection of Environmental Features	Improve Recreational Amenity	Opportunity to Improve Biodiversity	Approx. Cost of Works
C6	Orphanage Park	Unlined / Public reserve. Works would widen channel by 1 metre for length ~200m .	Local residents group is opposed to remedial work on the creek in the park.	м	Н	L	N	М	М	N	\$1 M
C7	Mitchell Street to Forestville Reserve	Partially lined / Private property. Works would widen channel by 1 metre and concrete lining for length > 400m .	Upgrades required between Cranbrook Avenue and the Glenelg Tramway. Impracticable to increase channel width to accommodate maximum design flow. Feasible in places for excess flow to bypass creek channel. Costs excluded for bridge upgrades at Railway, factories over the channel and the Tramway (refer D4).	м	М	L	N	М	L	N	\$6 M
C8	Forestville Reserve	Mainly unlined and landscaped / Public reserve.	Would be effective only if used in conjunction with other downstream upgrades. Creek in this area would lend itself to expansion in keeping with existing creek landscaping in southern half. Only minor works would be required.	М	н	м	N	М	L	N	< \$0.5 M
C9	Ethel Street to Leah Street	Concrete-lined / mainly public property (Unley Council).	Likely to have sufficient capacity (subject to more detailed investigation) and therefore no works required. But note requirements for bridge upgrades (refer D5).								-
C10	Adjacent Wilberforce Walk, between Leah St and Anzac Highway.	Channel has insufficient capacity to carry peak rural or urban flow in 100 year ARI event, leading to breakouts and overland flow across Anzac Hwy. Works would widen channel by 3 metres for ~500m length.	Creek in this area would lend itself to widening due to contiguity with Council land. Costs excluded for bridge upgrades at Anzac Highway, First and Second Avenues and works at Leah Street (refer D5).	н	н	М	N	М	М	N	\$8 M
C11	Full length channel upgrade	Required to accommodate: 30 m3/s at Belair Rd / 36 m3/s at Cross Rd / 37 m3/s at Goodwood Rd / 39 m3/s at Anzac Hwy	Comments for individual sections (C1 to C10) are applicable. Generally, upgrading the channel in all private properties is likely to be impracticable due to significant social impacts. Cost includes all required bridge upgrades	н	н	L	L	М	L	N	\$45 M+
	Bridge / Culvert Upgrades and Choke	Point Removal		<u> </u>	<u> </u>		<u> </u>		<u></u>		
D1	Upgrade bridges at Fife Ave and Ayr Ave to increase capacity	Fife Ave and Ayr Ave bridges are at natural low-lying areas and there is potential to raise bridge decks to increase capacity	George Street bridge to be upgraded by City of Mitcham.	М	н	Н	N	М	N	N	\$0.5 M
D2	Upgrade bridges at between Kent St and Jervois St	Includes upgrades at 3 x pedestrian access bridges, Devonshire St and Jervois St	Existing bridges determined to be under-capacity in 100 year ARI event, which may lead to breakouts.	М	н	Н	N	Н	N	N	\$0.8 M
D3	Upgrade bridges in Unley between Cross Rd and Mitchell St	Includes upgrades at Cross Rd, Heywood Ave, Victoria Ave, Northgate, Malcolm, Avenue and Regent Streets	Sections of the channel in between bridges is privately owned and therefore upgrade of channel to match upgraded bridge capacities would be difficult (refer C5).	М	н	М	N	н	N	N	\$3 M
D4	Upgrade bridges in Unley between Mitchell St and Forestville Reserve	Requires upgrades at Goodwood Rd, Cranbrook Ave, Railway crossing, factory, & Tramway	Sections of the channel in between bridges is privately owned and therefore upgrade of channel to match upgraded bridge capacities would be difficult (refer C7).	М	н	М	N	Н	N	N	\$2.5 M
D5	Upgrade bridges between Forestville Reserve and Anzac Highway to increase capacity	Requires upgrades at First and Second Avenues, Charles St and Anzac Highway	It should be noted that bridges/culverts at Third Ave and Leah Streets have been upgraded, and Ethel Street is planned to be upgraded in 2011/12. Includes some minor works at Leah Street to ensure 100 year ARI capacity. Refer C10.	н	н	Н	N	Н	N	N	\$2 M
D6	Constriction presented by house near Paisley Avenue Torrens Park, built over channel	The house restricts the capacity of the watercourse, leading to localised overtopping and inundation.	High-flow bypass is an option. This is probably more cost effective than increasing upstream dam capacity to further reduce peak flow. Base case mapping for events greater than 20 year ARI suggests that there is a problem from about this point down to Fife Avenue bridge.	М	М	М	N	М	N	N	\$2 M

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

H = High M = Moderate L = Low

Rating of Assessment Criteria

	Flood Mitigation Option	Key Information and Data	Significant Impacts / Comments	Reduction in Flooding Impacts	Technical Feasibility	Likely Community Acceptance	Water Quality and Reuse	Protection of Environmental Features	Improve Recreational Amenity	Opportunity to Improve Biodiversity	Approx. Cost of Works
	Overland Flow Interceptors										
E1	Glenelg Tramway interceptor	610 metre box culvert with dimensions 2.1 x 1.8m. Flow capacity = 9 m3/s. Up to 20 x 5m side entry pits along the Tramway to intercept overland flow.	Would intercept overland flow arriving at the Glenelg Tramway and feed back into the creek channel upstream from Forestville Reserve thereby minimising flooding in areas north and west of tramline. However, there would be no reduction in flooding upstream from the tramline. Option also incorporates upgrade of channel required from Leah St to Anzac Highway to 100 year ARI peak flow (costs included, refer C9 and D5). Some trees may have to be removed along Tramway.	н	М	М	N	L	N	N	\$17 M
E2	Leader Street interceptor (combined with Keswick Creek diversion culverts)	400 metre section of box culvert (1.8 x 1.5m), as extention to diversion culvert along Leader St. Flow capacity ~ 5 m3/s, and designed to match height of diversion culvert.	For interception system to be effective, would also require separate interceptor culvert on Third Avenue south of the creek (capacit = 4 m3/s) and a small section of channel upgrade (included in cost). Further analysis of catchment hydrology would be required to confirm that peak flow being diverted from Keswick Creek catchment would not coincide with flow to be intercepted from the Brown Hill Creek catchment. Would offer no reduction in flooding upstream from Leader Street.	н	М	М	Ν	М	N	N	\$8 M
E3	Leader Street interceptor	1300 metre section of box culvert (1.8 x 1.8m), <u>independent</u> to diversion culvert along Leader St. Peak flow capacity = 15 m3/s.	For interception system to be effective, would also require separate interceptor culvert on Third Avenue south of the creek (capacit = 4 m3/s) and a small section of channel upgrade (included in cost). Feasibility of this option is low due to additional relocation of services that might be required.	н	М	М	Ν	М	N	N	\$15 M
E4	Mitchell Street overland flow collector drain	530 metre section of 700mm RCP. Flow capacity = 4 m3/s.	Would serve to intercept any residual overtopping and flow down Regent St. It would feed flow back into channel at Mitchell St.	М	м	М	Ν	М	N	N	\$1 M
	Flow Diversions and High-Flow Bypas	ss Culverts									
F1	Divert partial flow to Sturt River catchment	Length of over 6 km and large diameter conduit along Cross Road and Anzac Highway. Assume flow diversion of up to 20 m3/s.	Lack of capacity in Sturt River system and high estimated cost precludes this option from further consideration.	н	L	М	Ν	М	N	N	\$40 M
F2	High-flow Bypass Culvert between Malcolm Street and Glenelg Tramway	1700 metre section of box culvert (1.8 x 1.5m) to be installed along roadways to avoid private property. Peak flow capacity = 10 m3/s.	Culvert would operate during large storms to carry a portion of the total peak urban flow, thereby reducing load on section of creek between Malcolm St and Forestville Reserve. Would need to be implemented with downstream channel upgrades to ensure that breakout location is not simply transferred downstream (refer C9 and D5, costs not included).	н	н	н	N	М	N	N	\$11 M
F3	High-flow Bypass Culvert between Mitchell Street and the Railway	600 metre section of box culvert (1.8 x 1.5m) to be installed along roadways to avoid private property. Peak flow capacity = 10 m3/s.	Culvert would operate during large storms to carry a portion of the total peak urban flow, thereby reducing load on section of creek between Mitchell St and the Railway. Would need to be implemented with downstream channel upgrades between the Railway and Anzac Hwy to ensure that breakout location is not simply transferred downstream (refer C9 and D5, costs not included).	н	н	Н	N	М	N	N	\$4 M

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

H = High M = Moderate L = Low

Rating of Assessment Criteria

							N = NII				
	Flood Mitigation Option	Key Information and Data	Significant Impacts / Comments	Reduction in Flooding Impacts	Technical Feasibility	Likely Community Acceptance	Water Quality and Reuse	Protection of Environmental Features	Improve Recreational Amenity	Opportunity to Improve Biodiversity	Approx. Cost of Works
	Miscellaneous Options										
G1	Revegetation of cleared rural areas	Applicable for rural areas in the Upper Brown Hill Creek catchment.	Maximum 14% reduction in peak runoff would not have as much impact as dams. 100 year ARI - reduction in peak flow from 27 to 23 m3/s at Scotch College. Unreliable & impracticable as a sustainable measure.	L	м	н	м	н	м	н	High
G2	Increased use of rainwater tanks	10 kL tank on 1,000 properties provides 10 ML of storage maximum, assuming that tanks are empty at start of rainfall.	Work to prepare 2006 Master Plan considered the findings of Pezzanati (2003), which showed little benefit of rainwater tank storage during large storm events. Up to 10ML possible storage would not have significant benefit in reduing runoff volumes during a major storm.	L	м	М	м	н	N	N	High
G3	Water sensitive urban design	Reported by VDM Consulting (2010).	Very limited areas for further application. Not expected to be significant benefit in reducing flooding during larger events.	L	н	Н	н	н	N	N	High
G4	Creation of creek meanders in reserves	For reserves in Mitcham: Mitcham, Soldiers Memorial, Morris and Delwood. Reserves in Unley: Heywood, Orphanage and Forestville.	Would provide little flood mitigation impact on peak flows due to relatively short length of creek in reserves and associated small areas in which to temporarily store the volume of flow	L	н	Н	L	м	м	L	\$0.5 M
G5	Clear channel of trees and vegetation	Reports by IDA (2000) and Tonkin (2008) confirm ingress of trees and vegetation. Current state of channels being investigated by AMLR NRM Board	Would have medium mitigation impact if completed in conjunction with other measures. Would require significant consultation with private property owners / Property owners may value vegetation overgrowth and exotic trees (refer H2)	L/M	н	L	L	м	L	N	ТВА
G6	Raise floors for properties at high risk	Required raising of floor levels would be > 1m in some areas of West Torrens. Impractical and costly to implement.	Floodplain flow patterns not improved. Would minimise damage to buildings that are raised, but it would take a very long time to fully implement. Good practice is to have habitable floor levels 300 mm above 100 year ARI level. Better to adopt for new houses and developments (refer H4).	L	L	L	L	L	L	N	High
	Non-structural Options										
H1	Purchase properties at high risk	Would require purchase of several properties along the creek channels and in other high hazard areas. Impractical and costly to implement.	In terms of the concept planning level of detail for the SMP, the purchase of high risk properties as a flood mitigation measure would not be economical compared with other measures. A small number of full or partial acquisitions may be necessary to accommodate infrastructure works. VDM Consulting (2010) identified high risk properties between Hampton Street and Cross Road in which the channel has been identified for upgrading (refer C4).	L	н	L	L	L	м	L	High
H2	Clarifying responsibilities for ensuring appropriate channel maintenance. Potential measures: - regular surveys of creek condition - offer maintenance services to landowners - offer to aquire easement over the watercourse	Reports by IDA (2000) and Tonkin (2008) confirm poor state of maintenance. Legislation: NRM Act - sections 31 and 131 Local Govt Act - Schedule 1A - section 21 It is noted that statutory power already exists for the State to maintain lower Brown Hill Creek and Keswick Creek	Issues include: - Agreement as to meaning of satisfactory maintenance (i.e., maintaining a watercourse in 'good condition') - Public control over a watercourse in private property - through land acquisition or creation of an easement - Responsibility for on-going maintenance, as between private owner or public authority - Poor condition of watercourse downstream can adversey impact upstream areas - Political difficulties in implementation but potential long term social and environmental benefits for upper Brown Hill Creek - extensive consultation required with landowners for each instance of easement acquisition	М	н	M/L	н	н	М	М	ТВА
H3	Flood awareness and warning	Increasing flood awareness and preparedness through continuation and improvement of the FloodSafe Program	Interviews with residents affected by flooding in 2005 showed that most could not recall being visited by SES as part of the FloodSafe program (Tonkin, 2011), which implies that they did not act in contacting SES on receiving the FloodSafe information pack from Council. Improvements could be made to FloodSafe to make it more effective in terms of consultation and communication.	М	н	н	N	N	N	N	\$100 K / year
H4	Implementation of the new Emergency Response Plan being prepared by SES	The SES is consulting the five catchment councils, the BOM and the Adelaide and Mount Lofty Ranges NRM Board as part of development of the plan. It is expected to be completed later this year and will be tested through desktop simulations and field exercises (Tonkin, 2011).	It is envisaged that this Emergency Response Plan would complement any existing internal flood and storm response plans that are currently in use by the catchment councils.	м	н	н	N	N	N	N	ТВА
H5	Building regulations (flood proofing or flood protection measures) and appropriate Planning Policy to incorporate WSUD as part of new developments	Planning policy and development assessment is discussed in Stage 1 Technical Report (2005). Councils' Development Plans have general policies relating to flood protection based on the 100 year ARI criteria, although the design standard can vary from council to council.	It is beyond the scope of this analysis to recommend any specific changes to councils' DPs. Councils are to consider a review of development assessment method as per recent City of Unley report (Tonkin, 2010). Effort/cost for any changes to Development Plans would be borne by individual councils.	н	н	М	N	М	N	N	NA

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

H = High M = Moderate L = Low

N – Nil

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Appendix J - Alternative Flood Mitigation Scenarios for Upper Brown Hill Creek

301015-02356wjh120801-REP-0006 - BHKC SMP 2012.doc

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

J. MITIGATION SCENARIOS 1 – 7 AND 9

J.1 SCENARIO 1 – FLOOD CONTROL DAM AT SITE 1 (15 M SPILLWAY HEIGHT)

This mitigation scenario involves the construction of a single flood control dam at Site 1, within the Brown Hill Creek Recreation Reserve. The approximate location of the dam is shown in **Figure 19**.

As shown in **Figure 13**, a dam at Site 1 would capture the largest proportion of the catchment area relative to other upper catchment detention options, thereby providing the most effective detention method for reducing peak flow from the upper catchment (*during a 36 hour storm*).

A dam at Site 1 with a spillway height of about 19 metres was originally investigated as part of the *Stage 1 Technical Report* (2005). This mitigation scenario was re-visited, while also considering the potential to reduce the size of such a dam, thereby reducing the cost and construction impacts.

Key features include the following:

- Height of dam to spillway level is 15 metres, which represents the peak level of storage during the 100 year ARI 36 hour storm. The approximate crest length is 125 metres.
- Storage volume at the spillway level is approximately 400 ML.
- Storage of runoff would be temporary and the dam would otherwise be empty under normal seasonal weather conditions.
- The dam orifice diameter is 1050 mm to control the rate of discharge during events up to and including the 100 year ARI storm.
- The form of the dam and spillway (*including construction method, materials and geometry*) is subject to further detailed investigations.
- The spillway would be designed considering the Probable Maximum Flood (*PMF*).
- While the objective should be to make the dam as unobtrusive as possible, spillway arrangements are a major consideration in the final form and layout of the works.
- The existing Brown Hill Creek Road would have to be relocated further south up the side of the hill to above the maximum storage level.
- Acquisition is required of three private properties (*including houses*) that are within the temporary storage area of the dam for the 100 year ARI flood.
- Department of Environment, Water and Natural Resources (*DEWNR*) is custodian of the recreation reserve. The Brown Hill Creek Recreation Park Management Plan contemplates that a flood control dam may have to be located within the reserve.
- Relevant Commonwealth and State Government approvals would be required for any action that may have significant ecological or heritage impacts. Preliminary advice from DEWNR indicates

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

that there are no threatened vegetation communities or high value habitat at risk in the immediate area.

- The capital cost is estimated to be approximately **\$14.1M** (*refer to* **Appendix J1** *for a cost break-down*), based on an earth embankment design.
- The Hampton Street to Cross Road channel upgrade (*refer Section 9.1.2*) would be retained as a component of this mitigation scenario. The estimated cost is approximately \$2.4M (*refer to* Appendix J2).

J.1.1 Impact on Peak Flows

A summary of the impact that the dam would have in reducing flows for the 100 year ARI storm is provided in **Table J1**.

The flows contained in **Table J1** (*and similar subsequent tables*) are based on the assumption that flow down through the floodplain is contained within the channel and flow is not lost from the system; i.e. it indicates the required flow conveyance of the channel to avoid spillage onto the floodplain.

As shown in the table, the proposed dam would offer significant benefit in reducing downstream flows during the 36 hour storm and also in reducing the potential volume that would overtop the channel.

	PEAK FLOW DURING 36 HOUR STORM (m³/s)								
LOCATION	BASE CASE (no dams)	DAM AT SITE 1 (15 m spillway height)	REDUCTION						
Scotch College	26.1	11.4	14.7						
Belair Road	30.2	14.1	16.1						
Cross Road	36.4	20.2	16.2						
Goodwood Road	37.1	20.7	16.4						
Hydrograph volume above 18 m ³ /s at Goodwood Road	250 ML	14 ML	236 ML						
Anzac Highway	38.9	22.9	16.0						

TABLE J1 FLOW REDUCTION AFFORDED BY FLOOD CONTROL DAM AT SITE 1

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

J.1.2 Reduction in 100 Year ARI Flood Damages

A 15 metre high flood control dam at Site 1 significantly reduces the 100 year ARI flood extent and provides increased flood mitigation compared with the combination of dams at Sites 2 and 4, as included in the 2006 Master Plan.

Despite this improvement, overtopping of the Brown Hill Creek channel would still occur at locations between Forestville Reserve and the Anzac Highway, leading to overland flow across the Highway and into West Torrens. Breakout would also occur in the vicinity of Regent Street, Millswood.

It is estimated that the dam would reduce the 100 year ARI damage bill to **\$28.9M**, which is a saving of approximately **\$149M** compared with the Base Case damages estimate of **\$178M**.

J.1.3 Summary

A dam at Site 1 (*15 metre spillway height*) is a viable engineering option, and is the optimal site in terms of detention effectiveness in reducing downstream flows due to peak runoff from the rural part of the catchment. However, by itself it does not address all flooding that emanates from Brown Hill Creek upstream of Anzac Highway.

J.2 SCENARIO 2 – FLOOD CONTROL DAM AT SITE 2 (20 M SPILLWAY HEIGHT)

This mitigation scenario would involve the construction of a single flood control dam at Site 2, as included in the 2006 Master Plan but excluding the dam at Site 4. Based on hydrologic modelling, the dam at Site 2 provides a majority of the detention benefit afforded by the 2006 Master Plan dams.

The location of the dam at Site 2 is shown in **Figure 19**. A summary of the proposed works is as follows:

- Height of dam to spillway level is 20 metres, which represents the peak level of storage during the 100 year ARI 36 hour storm. The approximate crest length is 160 metres.
- Storage volume at the spillway level is approximately 335 ML.
- Storage of runoff would be temporary and the dam would otherwise be empty under normal seasonal weather conditions.
- The dam orifice diameter is 600 mm to control the rate of discharge during events up to and including the 100 year ARI storm.
- The form of the dam and spillway is subject to further detailed investigations.
- The spillway would be designed considering the PMF.
- While the objective should be to make the dam as unobtrusive as possible, spillway arrangements are a major consideration in the final form and layout of the works.

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

- An access route (*undeveloped road reserve*) along the alignment of the creek would have to be relocated, which may require a cutting to be made in the side of the hill and associated land acquisition (*refer* **Figure 19**).
- A portion of each of two private properties located on either side of the watercourse would have to be acquired to accommodate the footprint of the dam, as well as closure the road reserve (*refer* Figure 19).
- The capital cost of the dam at Site 2 is estimated to be approximately **\$14.4M** (*refer to* **Appendix J3** *for a cost break-down*), based on an earth embankment design.
- The Hampton Street to Cross Road channel upgrade (*refer Section 9.1.2*) would be retained as a component of this scenario. The estimated cost is approximately \$2.4M (*refer to Appendix J2*).

J.2.1 Impact on Peak Flows

As shown in **Figure 13**, a dam at Site 2 would capture flow from a significant portion of the upper catchment. A summary of the impact that the dam would have in reducing flows for the 100 year ARI is provided in **Table J2**.

	P	PEAK FLOW DURING 36 HOUR STORM (m³/s)								
LOCATION	BASE CASE (no dams)	DAMS AT SITES 2 AND 4 (2006 Master Plan)	DAM AT SITE 2 (20 m spillway height)	REDUCTION						
Scotch College	26.1	13.1	16.0	10.1						
Belair Road	30.2	16.9	20.1	10.1						
Cross Road	36.4	23.1	26.3	10.1						
Goodwood Road	37.1	23.6	26.9	10.2						
Hydrograph volume above 18 m³/s at Goodwood Road	250 ML	42 ML	76 ML	174 ML						
Anzac Highway	38.9	25.7	28.7	10.2						

TABLE J2 FLOW REDUCTION AFFORDED BY FLOOD CONTROL DAM AT SITE 2

For comparison purposes, **Table J2** also contains hydrologic modelling results for the 2006 Master Plan configuration (*i.e. dams at Sites 2 and 4*). Although not as effective as the combined dams, the single dam at Site 2 provides significant reduction in peak flow; typically about 10 m³/s less than the Base Case at all locations along Brown Hill Creek upstream from Anzac Highway.

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Flow values in the table indicate that the inclusion of the dam at Site 4 provides additional flow reduction of only about 3 m^3 /s.

J.2.2 Reduction in 100 Year ARI Flood Damages

A 20 metre high flood control dam at Site 2 significantly reduces the 100 year ARI flood extent for the 36 hour storm, and provides only marginally less flood mitigation than the 2006 Master Plan works.

Despite this improvement, overtopping of the Brown Hill Creek channel would still occur at locations between Forestville Reserve and the Anzac Highway, leading to overland flow across the Highway and into West Torrens. Breakout would also occur in the vicinity of Regent Street, Millswood.

It is estimated that the single dam at Site 2 would reduce 100 ARI damages to **\$41.6M**, which is similar to the reduction in damages afforded by the 2006 Master Plan (*approximately* **\$136M** *relative to the Base Case damages estimate of* **\$178M**).

J.2.3 Summary

A dam at Site 2 is a viable option, particularly considering it provides similar flood mitigation as the 2006 Master Plan works at significantly reduced cost. However, by itself it does not address all flooding that emanates from Brown Hill Creek upstream of Anzac Highway.

J.3 SCENARIO 3 – DAM AT SITE 2 + WEIR SYSTEM IN BROWN HILL CREEK RECREATION RESERVE

This mitigation scenario comprises a flood control dam at Site 2, as outlined in Section J.2.

In order to further reduce residual overflows from the channel, additional detention is provided using a series of weirs within the Brown Hill Creek Recreation Reserve, as follows:

- Construction of nine weirs of various sizes at spacing of 100 to 150 metres between the Brown Hill Creek Caravan Park and the intersection of Brown Hill Creek Road and Tilleys Hill Road (*refer* Figure 19).
- As a preliminary concept design, the weirs have the following dimensions (*ordered from 1 to 9, downstream to upstream*):
 - Weir 1. 2.5 m high x 32 m wide (length across the channel)
 - Weir 2. 4 m high x 30 m wide
 - Weir 3. 4 m high x 28 m wide
 - Weir 4. 4.5 m high x 25 m wide
 - Weir 5. 7 m high x 38 m wide
 - Weir 6. 4.5 m high x 53 m wide
 - Weir 7. 6 m high x 70 m wide

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Weir 8. 4 m high x 32 m wide Weir 9. 4 m high x 49 m wide

- The weirs would have a combined storage volume of 80.8ML.
- It is unlikely that Brown Hill Creek Road would need to be relocated.
- As discussed above, the capital cost of the dam at Site 2 is estimated to be approximately **\$14.4M** (*refer to* **Appendix J3**).
- It is estimated the weirs would cost approximately \$9.2M (refer to Appendix J4 for cost breakdown), based on a concrete wall design.
- The Hampton Street to Cross Road channel upgrade would be retained as part of this scenario. The estimated cost is approximately **\$2.4M**.

J.3.1 Impact on Peak Flows

This scenario offers a similar reduction in peak flows as the flood control dam at Site 1 (*15 metre spillway height*) (*refer* **Table J1**).

The dam at Site 2 would capture runoff from the tributaries within the northern portion of the upper catchment (*refer* **Figure 13**) and the weir system would act to provide detention of flows from the very upper-most reaches of Brown Hill Creek in the southern portion of the catchment, thereby capturing a similar upstream area as a dam at Site 1.

J.3.2 Reduction in 100 Year ARI Flood Damages

The 100 year ARI floodplain mapping for this scenario would be similar to the mapping associated with the single dam option at Site 1. Accordingly, it is estimated that the scenario would reduce the 100 year ARI damages to **\$28.9M**.

J.3.3 Summary

The weirs are a viable option for providing additional flood mitigation benefit to a dam at Site 2. However, this scenario by itself does not address all flooding that emanates from Brown Hill Creek upstream from Anzac Highway.

J.4 SCENARIO 4 – DAM AT SITE 2 + GLENELG TRAMWAY INTERCEPTOR

In order to minimise residual flooding in areas of Unley and West Torrens for the Site 2 dam scenario (*refer* **Figure 12**), it is proposed overland flow could be intercepted at the Glenelg Tramway and then returned to the channel.

Further works would also be required to ensure that overtopping of the channel does not occur downstream from the tramway so that the 100 year ARI flow is retained within Brown Hill Creek and is fed into the upgraded channel that is proposed downstream from the highway as part of the 2006 Master Plan.

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

The proposed works are:

Flood control dam at Site 2

• As described above (refer Figure 19). The estimated cost is \$14.4M (refer Appendix J3).

Glenelg Tramway Interceptor

- Installation of a 610 metre long 1.8m (W) x 1.2m (H) box culvert along the southern side of the Glenelg Tramway from the Brown Hill Creek channel to approximately 50 metres beyond Goodwood Road (*refer* Figure J1).
- Five sets of large side-entry pits (*lintels*) up to 150mm high and additional sag inlet pits would be installed at key locations to intercept overland flow arriving at the tramway in the vicinity of Goodwood Road and the railway.
- The tramway creates an existing ridge of higher terrain, but additional minor earthworks may be required to ensure that overland flows are directed into the culvert.
- Estimated cost is **\$3.4M** (*refer* **Appendix J5**).

Channel upgrade works – Leah Street to Anzac Highway

- Upgrade of the channel capacity involves widening the channel by 3 metres and removal of the existing low-flow channel tier (*refer* Figure J1).
- A majority of this work would be undertaken within the creek section adjacent to Wilberforce Walk, with potential for minor impact on privately owned land immediately upstream from Anzac Highway.
- The creek adjacent to Wilberforce Walk is in private ownership and acquisition of this section of the creek, together with the section immediately upstream from Anzac Highway would be required.
- The upgrade works would be configured such that widening of the channel would encroach into council land, rather than increase the current footprint of the channel over private land.
- The channel upgrade would also involve works to increase the capacity of bridge culverts at Leah Street (*subject to verification*), First and Second Avenues, Anzac Highway and Charles Street. The bridge at Ethel/Nichols Street is planned to be upgraded by Unley Council in the near future and presumably it will be designed to accommodate the peak 100 year ARI flow.
- Estimated cost is \$10.1M (refer Appendix J6).

Hampton Street to Cross Road channel upgrade

• The upgrade would be retained as part of this scenario at an estimated cost of **\$2.4M**.

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

J.4.1 Reduction in 100 Year ARI Flood Damages

The effectiveness of a flood control dam at Site 2 in reducing peak 100 year ARI flows for the critical 36 hour storm is documented above in **Table J2**.

Hydraulic modelling was undertaken for the scenario to produce the 100 year ARI mapping in **Figure J1**. As shown, the interceptor culvert at the tramway would be configured to ensure that overland flow along Goodwood Road and the railway is successfully transferred back to the channel immediately upstream of Forestville Reserve.

Implementing the channel upgrades downstream from the reserve will minimise any potential overtopping from the channel immediately upstream from the Anzac Highway so that flow is successfully directed into the proposed channel upgrades downstream from the highway.

It is estimated that this mitigation scenario would reduce the 100 year ARI flood damages to **\$18.9M**, which is a saving in damages over the Base Case of approximately **\$159M**.

J.4.2 Summary

The tramway interceptor, as modelled, provides additional flood mitigation benefit to a flood control dam at Site 2. However, there is uncertainty in the operational effectiveness of such a system compared with other options, and it may be regarded as inequitable because areas upstream of the interceptor are still exposed to flooding.

J.5 SCENARIO 5 – DAM AT SITE 2 + SUPPLEMENTARY WORKS

An alternative to the Glenelg Tramway interceptor culvert that was also investigated involved a separate set of supplementary works, also for use in conjunction with the dam at Site 2. The design rationale again is to limit breakouts and capture any residual overflows upstream from the Anzac Highway, thereby minimising the flood extent and damages downstream from the Highway.

The proposed works are:

Flood control dam at Site 2

• As described above (*refer* Figure 19). The estimated cost is \$14.4M (*refer* Appendix J3).

Mitchell Street Collector

- Installation of a 530 metre long, 1350 mm diameter pipe culvert along Mitchell Street to the east of the Brown Hill Creek channel to capture any residual flow that has broken out from the channel upstream near Regent Street (*refer* Figure J2).
- Up to 8 metres length of large side-entry pits (*lintels*) up to 150mm high would be installed at key locations along the kerb and gutter of Mitchell Street to intercept overland flow and then feed it back to the channel.
- Estimated cost is **\$1.8M** (*refer* **Appendix J7**).

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

High-Flow Bypass – Mitchell Street to Railway

- Installation of a 560 metre long high-flow bypass box culvert with dimensions 1.8m (W) x 1.5m (H) between Mitchell Street and the railway to carry up to 12 m³/s of flow during major storm events, thereby reducing the load on the existing open channel between these locations (*refer* Figure J2).
- Estimated cost is **\$3.7M** (*refer* **Appendix J8**).

High-Flow Bypass – Victoria Street to Tramway

- Installation of an additional 260 metre long high-flow bypass box culvert with dimensions 1.8m (W) x 1.5m (H) between Victoria Street and the Glenelg Tramway to carry up to 12 m³/s of flow (*refer* Figure J2). Upgrade of the bridge at the railway is also required.
- Estimated cost is **\$2.5M** (*refer* **Appendix J9**).

Channel upgrade – Leah Street to Anzac Highway

• As outlined in Section J.4. Estimated cost is **\$10.1M** (refer Appendix J6).

Hampton Street to Cross Road channel upgrade

• The upgrade would be retained as part of this scenario at an estimated cost of **\$2.4M**.

J.5.1 Reduction in 100 Year ARI Flood Damages

The effectiveness of a flood control dam at Site 2 in reducing peak 100 year ARI flows for the critical 36 hour storm is documented above in **Table J2**.

Hydraulic modelling was undertaken for the scenario to produce the 100 year ARI mapping in **Figure J2**. The "supplementary works" (*i.e. all ancillary works between Mitchell Street and Anzac Highway*) would mainly act to retain flows within the creek channel and also collect any residual flow that might spill from the channel upstream from Mitchell Street.

Including the channel upgrades downstream from Forestville Reserve will minimise any potential overtopping from the channel immediately upstream from the Anzac Highway so that flow is successfully directed into the proposed channel upgrades downstream from the highway.

It is estimated that this mitigation scenario would reduce the 100 year ARI flood damages to **\$16.7M**, which is a saving in damages over the Base Case of more than **\$161M**.

J.5.2 Summary

This is an effective scenario for flooding reduction. However, it still leaves the area in the vicinity of Regent and Avenue Streets at risk. Also, it may be impracticable to install a high-flow bypass culvert along the railway north of Cranbrook Avenue as this may encroach into privately owned land and affect existing dwellings.

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

J.6 SCENARIO 6 – GLENELG TRAMWAY INTERCEPTOR + CHANNEL UPGRADE WORKS

The option for installing a flow interceptor culvert at the Glenelg Tramway was also considered in isolation of any upper catchment detention options. In this case, the interceptor would need to have increased capacity in order to capture additional overland flows that are expected to come off the upper catchment.

Similar to the mitigation scenario in Section J.4, additional channel upgrade works would be required to ensure that overtopping of the channel does not occur downstream from the tramway.

The proposed works are:

Glenelg Tramway Interceptor

- Installation of a 610 metre long 2.1m (W) x 1.8m (H) box culvert along the southern side of the Glenelg Tramway from the Brown Hill Creek channel to approximately 50 metres beyond Goodwood Road (*refer* Figure J3).
- The length of culvert is similar to that for the interceptor described above in Section J.4 because the overall extent of the overland flow paths between Goodwood Road and the railway is not significantly increased despite the omission of the dam at Site 2 from this scenario (*compare* Figures J1 and J3).
- Up to 20 large side-entry pits (*lintels*) up to 150mm high and additional sag inlet pits would be installed at locations to intercept overland flow arriving at the tramway in between Goodwood Road and the railway.
- The tramway creates an existing ridge of higher terrain, but additional minor earthworks may be required to ensure that overland flows are directed into the culvert.
- There is increased scope of work compared with works of the Section J.4 option due to increased flow conveyance required in lieu of upper catchment detention.
- Estimated cost is **\$6.2M** (*refer* **Appendix J10**).

Channel upgrade – Leah Street to Anzac Highway

- Upgrade of the Brown Hill Creek channel between Leah Street and the Anzac Highway involving widening of the channel by 3 metres, removal of the existing low-flow channel tier and additional bunding to a height of 0.2 to 0.5 metres (*refer* Figure J3).
- There is increased scope of work compared with works of the Section J.4 option due to increased flow conveyance required in lieu of upper catchment detention.
- Estimated cost is **\$10.4M** (*refer* **Appendix J11**).

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Hampton Street to Cross Road channel upgrade

• This would be retained. However, additional channel width will be required compared to the upgrade retained for detention scenarios. The estimated cost is approximately **\$2.8M** (*refer* **Appendix J12**).

J.6.1 Reduction in 100 Year ARI Flood Damages

As shown in **Figure J3**, the interceptor culvert at the tramway would be configured to ensure that overland flow between Goodwood Road and the railway is captured and transferred back to the channel immediately upstream of Forestville Reserve.

Implementing the downstream channel upgrades will minimise any potential overtopping from the channel immediately upstream from the Anzac Highway so that flow is directed into the proposed channel upgrades downstream from the Highway.

It is estimated that this mitigation scenario would reduce the 100 year ARI flood damages to **\$29.5M**, which is a saving in damages over the Base Case of approximately **\$148M**.

J.6.2 Summary

There is significant reduction in flood damages for areas downstream from the tramway, including West Torrens. However, the interceptor does not provide any flood mitigation benefit for areas upstream from the tramway, with significant breakouts still occurring in the vicinity of Cross Road, Regent Street and Goodwood Road.

J.7 SCENARIO 7 – KESWICK CREEK DIVERSION INTERCEPTOR

An interceptor system to feed into the previously proposed diversion culverts from Keswick Creek (2006 Master Plan) was considered as an alternative to upper catchment detention and to take advantage of the diversion works already proposed for construction at minimal extra cost.

The proposed works are:

Diversion Interceptor at Leader Street

- Installation of a 370 metre long 1.8m (W) x 1.5m (H) box culvert along Leader Street between Devon Street North and Goodwood Road to feed into the Le Hunte Street diversion culvert, south of the Showgrounds at Devon Street North (*refer* Figure J4). This would effectively represent an extension to the diversion culvert along Leader Street to capture overland flows east of Devon Street North.
- Up to 35 large side-entry pits up to 150mm high would be installed at various intervals along Leader Street and Anzac Highway to intercept overland flow, including at the additional culvert section described above, while some would also feed directly into the diversion culvert further to the west.
- Estimated cost is **\$2.3M** (*refer* **Appendix J13**).

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Interceptor at Third Avenue

- Installation of an additional 200 metre section of 1.8m (W) x 1.2m (H) box culvert along Third Avenue between Everard Terrace and the Brown Hill Creek channel to capture overland flows on the southern side of the channel (*refer* Figure J4). This interceptor would require up to 10 large side-entry pits.
- Estimated cost is **\$1.2M** (*refer* **Appendix J14**).

Channel upgrade – Third Avenue to Anzac Highway

- This involves widening the channel by 3 metres and removal of the existing low-flow channel tier (*refer* **Figure J4**).
- There may be potential for minor impact on privately owned land immediately upstream from Anzac Highway, as outlined in Section J.4.
- The culvert beneath Anzac Highway also needs to be upgraded to increase its capacity.
- Estimated cost is **\$4.2M** (*refer* Appendix J15).

Hampton Street to Cross Road channel upgrade

 The channel upgrade would be retained as part of this scenario at an estimated cost of \$2.8M (refer Appendix J12).

J.7.1 Hydrologic Analysis

The latest concept design for the Keswick Creek diversion (*Tonkin 2010*) comprises two separate culverts; the Le Hunte Street diversion and the Anzac Highway diversion (*refer* **Figure J4**). The culverts are designed to carry a combined flow of 24 m³/s (*reduced from 25 m³/s, as reported in Tonkin Consulting, 2009 & 2010a*), comprising off-takes of 14 m³/s at Le Hunte Street and 10 m³/s at Anzac Highway.

The primary function of the diversion culverts will be to divert flow from Keswick Creek during the 90 minute storm as this is the critical duration storm for the urbanised Keswick Creek catchment.

The Leader Street diversion was investigated also for its potential to intercept overland flows that are primarily the result of overflows from Brown Hill Creek during the 36 hour storm (*i.e. flows originating principally from the upper rural portion of the catchment*).

Hydrologic modelling by DPTI for the catchment based on the latest concept designs for the diversion culverts and for the proposed detention system in South Park Lands shows that the peak diverted flow through the culverts during the 36 hour storm (*100 year ARI*) would be approximately 18 m³/s, resulting in spare capacity in the culverts of about 6 m³/s.

However, hydraulic modelling results for Brown Hill Creek indicate that the total overland flow arriving at Leader Street and Anzac Highway during the 36 hour storm would be about

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

15 m³/s. It is therefore unlikely that the diversion culverts would have sufficient spare capacity to carry this additional flow.

Enlarging the diversion culvert along Leader Street was considered as a method for accommodating the overland flow. However, according to the concept design drawings for the diversions prepared by Tonkin Consulting (*2011a*), increasing the width or height of the box culvert is likely to interfere with the existing services in the roadways, particularly along Leader Street and in the vicinity of the intersection with Anzac Highway. Subject to further investigation, it may be feasible to relocate the services, but at significant additional cost and disruption.

Another issue is the potential for surcharge to occur from the large side-entry pits when the diversion culverts are flowing full and under pressure with flow from Keswick Creek. Further detailed analysis would be required to determine the hydraulic behaviour of the culverts under a variety of headwater and tailwater conditions.

J.7.2 Reduction in 100 Year ARI Flood Damages

Assuming that the feasibility issues can be overcome, it is expected that the interceptor culverts at Leader Street and Third Avenue would minimise the overland flow across the Anzac Highway and into West Torrens during the 36 hour storm (*refer* **Figure J4**).

It is estimated that the associated reduction in 100 year ARI flood damages would be approximately **\$33.4M**, which is a saving in damages over the Base Case of approximately **\$145M**.

J.7.3 Summary

There is significant reduction in flood damages for areas downstream from Leader Street / Third Avenue, but there is limited benefit for upstream areas.

The option is unlikely to be feasible because there is minimal capacity for the culverts to accept overland flows for either the 90 minute or 36 hour storm and there is potential for surcharge to occur when flowing full.

Increasing the capacity of the diversion culvert to accept the increased flow is unlikely to be feasible due to the proximity of existing underground services along Leader Street, and the large costs involved with any potential relocation. The cost for culvert enlargement or services relocation has not been considered at this stage.

J.8 SCENARIO 9 – COMPLETE CHANNEL UPGRADE (MUGGS HILL ROAD TO ANZAC HIGHWAY)

The option has been included in this assessment of alternative mitigation scenarios primarily to put into perspective the extent of channel upgrading works required to eliminate any overtopping along upper Brown Hill Creek, in the absence of other mitigation measures, including detention of the peak rural flow.

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

A summary of the proposed works is as follows (from downstream to upstream):

- Upgrade of the Brown Hill Creek channel between Leah Street and the Anzac Highway involving widening of the channel by 3 metres, removal of the existing low-flow channel tier and some additional bunding to a height of 0.2 to 0.5 metres (*refer* Figure J5). It would also involve works to increase the capacity of bridges/culverts at Leah Street, First and Second Avenues, Anzac Highway and Charles Street. The estimated cost is \$10.4M (*refer* Appendix J11).
- Upgrade of the channel between Victoria Street and the Glenelg Tramway involving widening of the channel by 1 to 3 metres and some additional bunding to a height of 0.2 metres (*refer* Figure J5). It would also involve works to increase the capacity of bridges/culverts at the railway near Victoria Street, factories over the channel and the Glenelg Tramway crossing. The estimated cost is \$5.1M (*refer* Appendix J19).
- Upgrade of the channel between Cranbrook Avenue and the railway line involving widening of the channel by 1 metre (*refer* Figure J5). It would also involve works to increase the capacity of the bridge/culvert at Cranbrook Avenue. The estimated cost is \$3.7M (*refer* Appendix JG20).
- Upgrade of the channel between Victoria Avenue and Mitchell Street involving widening of the channel by between 1 and 3 metres and additional bunding to a height of 0.2 to 0.5 metres (*refer* Figure J5). It would also involve works to increase the capacity of the bridges/culverts at Victoria Avenue, Northgate Street, Malcolm Street, Avenue Street, Regent Street, and the pedestrian bridge at Percy and Douglas Streets. The estimated cost is \$7.9M (*refer* Appendix J21).
- Upgrade of the channel between Hampton Street and Heywood Avenue involving widening of the channel by between 1 and 4 metres and additional bunding to a height of 0.5 metres (*refer* Figure J5). It would also involve works to increase the capacity of the bridges/culverts at Hampton Street, Cross Road, the factory over the channel downstream from Cross Road and at Heywood Avenue. The estimated cost is \$7.4M (*refer* Appendix J22 and J12).
- Channel upgrades between Muggs Hill Road and Devonshire Street involving widening of the channel of 1 to 2 metres at three separate sections of the creek (*refer* Figure J5). It would also involve removal or bypass of the constriction at Paisley Avenue. The estimated cost is \$9.0M (*refer* Appendix J23).
- Additional bridge/culvert capacity upgrades:
 - \Rightarrow Goodwood Road
 - \Rightarrow Whistler Avenue pedestrian access bridge
 - \Rightarrow George Street (although this is proposed to be completed in the near future)
 - \Rightarrow Devonshire Street
 - \Rightarrow Ayr Avenue
 - \Rightarrow Fife Avenue
 - \Rightarrow Estimated cost is **\$3.6M** (*refer* **Appendix J24**).

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

J.8.1 Reduction in 100 Year ARI Flood Damages

In assessing the potential reduction in flood damages for this mitigation scenario, it was assumed that the full channel upgrade would eliminate all overtopping of the channel upstream from Anzac Highway and thereby direct all flow into the downstream channel upgrades previously proposed as part of the 2006 Master Plan.

In this regard, it is estimated that this mitigation scenario would reduce 100 ARI damages to **\$15.7M**, which corresponds to a damages saving over the Base Case of approximately **\$162M**.

J.8.2 Summary

Undertaking a complete upgrade of the channel would cause significant private property impacts and it would be very difficult to gain community acceptance or support for this scenario. It is also significantly more expensive than other scenarios that offer similar flood mitigation outcomes.

Rp301015-02356 - Brown Hill Keswick Creek SMP fg301015-02356-110802-fig_Tramway+Dam2.doc

Council Area Boundary

Note:

100 year ARI depth mapping shown for Site 2 Flood Control Dam scenario. Depths > 0.5 metres are shown in blue.

GLENELG TRAMWAY OVERLAND FLOW INTERCEPTOR CULVERT TO BE USED WITH FLOOD CONTROL DAM AT SITE 2

FIGURE J1

Rp301015-02356 - Brown Hill Keswick Creek SMP fg301015-02356-110802-fig_SuppWorks+Dam2.doc

FIGURE J2

LEGEND

Base case extent shown for comparison purposes, areas north of Mitchell Street are otherwise protected by interceptor and other works on Keswick/Parklands/Glen Osmond Creeks

Note: 100 year ARI depth mapping shown for Site 2 Flood Control Dam scenario. Depths > 0.5 metres are shown in blue.

Council Area Boundary

SUPPLEMENTARY WORKS TO BE USED WITH FLOOD CONTROL DAM AT SITE 2

Rp301015-02356 – Brown Hill Keswick Creek SMP fg301015-02356-110802-fig_Tramway.doc

FIGURE J3

LEGEND

Council Area Boundary

Note:

Base case extent otherwise protected by interceptor and other works on Keswick/Parklands/Glen Osmond Creeks

Base case 100 year ARI depth mapping shown (no upper catchment detention). Depths > 0.5 metres are shown in blue.

GLENELG TRAMWAY OVERLAND FLOW INTERCEPTOR CULVERT

Rp301015-02356 - Brown Hill Keswick Creek SMP fg301015-02356-110802-fig_KCkDivInterceptor.doc

FIGURE J4

LEGEND

Council Area Boundary

Base case extent otherwise protected by interceptor culverts and other works on Keswick/Parklands/Glen Osmond Creeks

Note:

Base Case 100 year ARI depth mapping shown (no upper catchment detention). Depths > 0.5 metres are shown in blue.

INTERCEPTOR CULVERT AT KESWICK CREEK DIVERSION

Rp301015-02356 - Brown Hill Keswick Creek SMP fg301015-02356-110802-fig_Channel Upgrades.doc

resources & energy

FIGURE J5

- Fife/Lochwinndoch Ave
- Ayr Ave
- Whistler Ave Pedestrian Access Bridge
- Goodwood Rd
- Ethel/Nichols St
- Charles St

LEGEND

Base case extent shown for comparison purposes

Council Area Boundary

BROWN HILL CREEK CHANNEL UPGRADES FROM MUGGS HILL ROAD TO ANZAC HIGHWAY

Appendix J1: Cost Estimate for Brown Hill Creek Flood Control Dam at Site 1 (Spillway Height = 15 metres)

This cost estimate has been adapted from the 2006 Master Plan, with materials and quantities altered to suit. Rates have been inflated to represent 2011 dollars. Detailed survey and geotechnical information is required to prepare a detailed cost estimate. Estimate based on earth embankment design with separate spillway.

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	DIRECT COST	CONTINGENCY	TOTAL	
				\$	\$	%		Sub-total
1	PRELIMINARIES			20%				\$1,803,546
1.01	Contractor's supervision	Item						
1.02	Site Establishment	Item						
1.03	Site Running Costs	Item						
1.04	Plant and Equipment	Item						
1.05	Fees & Charges (Including insurances)	Item						
1.06	Other - Construct Haul Roads	Item						
2	DIVERSION CONTROL AND WATER SUPPLY DURING CONSTRUCTION							\$275,024
2.01	Cofferdam							
2.02	Strip embankment crest - 1.0m depth	m ³	2,070	12	25,854	25	32,318	
2.03	Raise Embankment 4m with selected fill	m ³	1,600	55	88,000	25	110,000	
2.04	Spillway Construction	LS	1	6,245	6,245	25	7,806	
2.05	DN200 PVC Water Supply Pipeline	m	400	187	74940	25	93,675	
2.06	Pump Set + Power	LS	1	24980	24980	25	31,225	
3	EXCAVATION AND EARTHWORKS							\$1,675,762
	Embankment, Abutment and Borrow							
3.01	Clearing	m ²	12,350	3.75	46,275	25	57,844	
3.02	Topsoil stripping - 150 mm depth	m ³	1,853	9.37	17,353	25	21,692	
3.03	Excavate Borrow Material	m ³	10,498	6.25	65,609	25	82,012	
3.04	Special cleanoff of foundation (10% of stripping)	m²	2,470	25	61,701	25	77,126	
	Outlet Works							
3.05	Excavation for pipe - soil	m ³	1,172	17.50	20,508	25	25,635	
3.06	Excavation for pipe - rock	m ³	3,828	34.20	130,922	25	163,652	

NOTE:

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	DIRECT COST	CONTINGENCY	TOTAL	
				\$	\$	%		Sub-total
	Spillway							
3.07	Excavation of Top Soil for Spillway Approach and Chute	m ³	1,763	9.37	16,510	25	20,638	
3.08	Excavation for Spillway in Soil	m ³	9,988	17.50	174,781	25	218,477	
3.09	Excavation for Spillway in Rock	m ³	23,500	34.20	803,700	25	1,004,625	
3.10	Excavation for Invert Drains and Joints	m ³	130	25.00	3,250	25	4,063	
Δ	DRAINAGE							\$34 566
4 01		2	246	110.41	27.452	25	24 544	\$34,300
4.01		m	240	112.41	27,055	23	54,500	
5	EMBANKMENT CONSTRUCTION							\$4,721,049
5.01	Conduct roller trial.	m ³	200	55.00	11,000	25	13,750	
5.02	Embankment core (selected fill material)	m ³	14,630	90.00	1,316,700	25	1,645,875	
5.03	Embankment - upstream & downstream fill material	m ³	41,420	55.00	2,278,100	25	2,847,625	
5.04	Construct rock toe	m ³	1,107	62.45	69,132	25	86,415	
5.05	Topsoil spreading	m²	3,464	6.87	23,795	25	29,744	
5.06	Rip Rap on upstream face (500mm thick)	m ³	615	124.90	76,814	25	96,017	
5.07	Hydromulching and pulping	ha	0.35	3,747.00	1,298	25	1,622	
6	INSTRUMENTATION							\$10.929
	Dam instrumentation, supply and install (GIS)							
6.01	Supply & Install Rain gauge (pluviograph)	No.	1	3,123	3,123	25	3,903	
6.02	Supply & Install Water level monitor	No.	1	5,621	5,621	25	7,026	
7	CONCRETE IN STRUCTURES							\$260,487
	Outlet Works							
7.01	Concrete in d/s outlet & dissipator	m ³	22	1,374	30,226	25	37,782	
7.02	Outlet pipe - 1050 mm RCP	m	120	1,365	163,800	25	204,750	
7.03	Upstream headwall	No.	1	6,245	6,245	25	7,806	
7.04	Construct scour outlet rock protection	m ³	100	81	8,119	25	10,148	

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	DIRECT COST	CONTINGENCY	TOTAL	
				\$	\$	%		Sub-total
8	GEOTEXTILES and PLASTICS							\$14,051
8.01	Supply and install filter fabric "Bidim A44" for Rock Toe.	m²	2,000	5.62	11,241	25	14,051	
0								*0(4(04
9	RUADWURKS							\$804,094
	Crest access road							
9.01	Trim, level, grade surface	m²	615	7.00	4,305	25	5,381	
9.02	Basecourse material	m ²	615	50	30,725	25	38,407	
9.03	Bitumen sealing	m ²	615	15	9,225	25	11,531	
	Relocation of Brown Hill Creek Road							
9.04	Excavation for road	m ³	15,000	17.50	262,500	25	328,125	
9.05	Country highway - two lanes	m	1,000	385	385,000	25	481,250	
10	FENCING and SIGNAGE							\$31,225
10.01	Supply and install fencing and signage around the spillway	ltem	1	18,735	18,735	25	23,419	
10.02	Supply and install fencing and signage around the site	Item	1	6,245	6,245	25	7,806	
11	PROPERTY ACQUISITION							\$3.384.375
11.01	Property acquisition	m ²	67.000	23	1.507.500	25	1.884.375	
11.00		ltom	2	400.000	1 200 000	25	1 500 000	
11.02		Item	3	400,000	1,200,000	23	1,500,000	
	CAPITAL COST ESTIMATE TOTAL				\$ 9,017,730			\$13,075,708
	INVESTIGATION, DESIGN & PROJECT MANAGEMENT	Item	8,113,775	10%	811,378	25	1,014,222	\$1,014,222
			l	1		ſ	TOTAL	\$14,089,930

Appendix J2: Cost Estimate for Brown Hill Creek Channel Upgrade between Hampton St and Cross Rd (Flood Control Dam Scenario)

NOTE:

This cost estimate has been adapted from the 2006 Master Plan, with materials and quantities altered to suit. Rates have been inflated to represent 2011 dollars. Detailed survey and geotechnical information is required to prepare a detailed cost estimate.

ltem	Description	Quantity	Unit	Rate	Costs
1	Overheads & Preliminaries	1	ltem	5%	\$74 226
2	Construct Coffer Dam to existing Channel to allow water to be	1	No	\$24,980	\$24,980
<u> </u>	diverted around live construction site	1	110	φ24,500	φ24,500
3	Construct vehicle & equipment access ramp to channel floor	1	No	\$18,735	\$18,735
4	Pump & generator hire	90	Dav	\$500	\$44,964
5	Purchase 500m of 200mm dia hose	300	m	\$144	\$43,091
6	Clamps & connectors to suit 200mm dia.hose	30	No	\$175	\$5,246
7	Set up pumps & hoses	2	day	\$749	\$1,499
8	Trim existing unlined walls x 255m	205	m ³	\$187	\$38,407
9	Earthworks to Base Level & sides (incld support)	1530	m ³	\$94	\$143,323
10	Disposal of soil	1735	m ³	\$37	\$65,010
11	Install trench support (Closed Boarding) - avg2.4m high	1224	m ²	\$37	\$45,863
12	Allow 200mm FCR compacted to Culvert floor	205	m ³	\$75	\$15,363
13	Lay 200mm Blinding Concrete under panels	205	m ³	\$350	\$71,693
14	Construct Base Slab	210	m ³	\$525	\$110,162
15	Pour Concrete Walls, incl labour	350	m ³	\$1,374	\$480,865
16	Property Acquisition	8	Item	\$31,225	\$249,800
17	Traffic Control	1	Item	\$84,308	\$84,308
18	Service Location	1	Item	\$31,225	\$31,225
19	Domestic Service Connection Relocations	8	no	\$1,249	\$9,992
	Sub-Total				\$1,558,750
	Design Costs			30%	\$467,625
	Contingency			25%	\$389,688
				TOTAL	\$2,416,063
NOTE:

This cost estimate has been adapted from the 2006 Master Plan, with materials and quantities altered to suit. Rates have been inflated to represent 2011 dollars. Detailed survey and geotechnical information is required to prepare a detailed cost estimate.

Estimate based on earth embankment design with separate spillway.

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE \$	DIRECT COST \$	CONTINGENCY %	TOTAL	Sub-total
1	PRELIMINARIES			20%)			\$1,838,297
1.01	Contractor's supervision	Item	Included					
1.02	Site Establishment	Item	Included					
1.03	Site Running Costs	Item	Included					
1.04	Plant and Equipment	Item	Included					
1.05	Fees & Charges (Including insurances)	Item	Included					
1.06	Other - Construct Haul Roads	Item	Included					
2	DIVERSION CONTROL AND WATER SUPPLY DURING CONSTRUCTION							\$275,024
2.01	Cofferdam (x 1)							
2.02	Strip embankment crest - 1.0m depth	m ³	2,070	12	25,854	25	32,318	
2.03	Raise Embankment 4m with selected fill	m ³	1,600	55	88,000	25	110,000	
2.04	Spillway Construction	LS	1	6,245	6,245	25	7,806	
2.05	DN200 PVC Water Supply Pipeline	m	400	187	74,940	25	93,675	
2.06	Pump Set + Power	LS	1	24,980	24,980	25	31,225	
3	EXCAVATION AND EARTHWORKS							\$1,550,802
	Embankment, Abutment and Borrow							
3.01	Clearing	m²	12,000	3.75	44,964	25	56,205	
3.02	Topsoil stripping - 150 mm depth	m ³	1,800	9.37	16,862	25	21,077	
3.03	Excavate Borrow Material	m ³	11,000	6.25	68,695	25	85,869	
3.04	Special cleanoff of foundation (10% of stripping)	m²	2,400	25	59,952	25	74,940	
	Outlet Works							
3.05	Excavation for pipe - soil	m ³	1,172	17.50	20,508	25	25,635	
3.06	Excavation for pipe - rock	m ³	3,828	34.20	130,922	25	163,652	

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE \$	DIRECT COST \$	CONTINGENCY %	TOTAL	Sub-total
	Spillway							
3.07	Excavation of Top Soil for Spillway Approach and Chute	m ³	1,586	9	14,859	25	18,574	
3.08	Excavation for Spillway in Soil	m ³	8,989	17.50	157,303	25	196,629	
3.09	Excavation for Spillway in Rock	m ³	21,150	34.20	723,330	25	904,163	
3.10	Excavation for Invert Drains and Joints	m ³	130	25	3,247	25	4,059	
4	DRAINAGE							\$44,964
4.01	Construct stone pitched drains along rock toe	m ²	320	112	35,971	25	44,964	
5	EMBANKMENT CONSTRUCTION							\$6,049,191
5.01	Conduct roller trial.	m ³	200	55	11,000	25	13,750	
5.02	Embankment (selected fill material)	m ³	19,245	90	1,732,038	25	2,165,048	
5.03	Embankment - upstream & downstream fill material	m ³	54,485	55	2,996,701	25	3,745,876	
5.04	Construct downstream rock toe	m ³	317	62	19,804	25	24,755	
5.05	Topsoil spreading	m ²	5,550	7	38,122	25	47,653	
5.06	Rip Rap on upstream face (500mm thick)	m ³	317	125	39,608	25	49,510	
5.07	Hydromulching and pulping	ha	0.55	3,747	2,079	25	2,599	
6	INSTRUMENTATION							\$10,929
	Dam instrumentation, supply and install (GIS)							
6.01	Supply & Install Rain gauge (pluviograph)	No.	1	3,123	3,123	25	3,903	
6.02	Supply & Install Water level monitor	No.	1	5,621	5,621	25	7,026	
7	CONCRETE IN STRUCTURES							\$158,787
	Outlet Works							
7.01	Concrete in d/s outlet & dissipator	m ³	22	1,374	30,226	25	37,782	
7.02	Outlet pipe - 600 mm RCP	m	120	687	82,440	25	103,050	
7.03	Upstream headwall	No.	1	6,245	6,245	25	7,806	
7.04	Construct scour outlet rock protection	m ³	100	81	8,119	25	10,148	

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE \$	DIRECT COST \$	CONTINGENCY %	TOTAL	Sub-total
8	GEOTEXTILES and PLASTICS							\$15,269
8.01	Supply and install filter fabric "Bidim A44" for Rock Toe.	m²	2,173	6	12,215	25	15,269	
9	ROADWORKS							\$81,608
	Crest access road							
9.01	Trim, level, grade surface	m ²	815	7	5,344	25	6,680	
9.02	Basecourse material	m²	815	50	40,717	25	50,897	
9.03	Bitumen sealing	m ²	815	15	12,225	25	15,281	
	Access Road to Dam 2							
9.04	Trim, level, regrade surface as required	m²	1,000	7	7,000	25	8,750	
10	FENCING and SIGNAGE							\$31,225
10.01	Supply and install fencing and signage around the spillway	Item	1	18,735	18,735	25	23,419	
10.02	Supply and install fencing and signage around the site	Item	1	6,245	6,245	25	7,806	
11	PROPERTY ACQUISITION							\$3,271,559
11.01	Property acquisition - Dam 2	m²	94,118	23	2,617,247	25	3,271,559	
	CAPITAL COST ESTIMATE TOTAL				\$ 9,191,486			\$13,327,655
	INVESTIGATION, DESIGN & PROJECT MANAGEMENT	Item	8,412,537	10%	841,254	25	1,051,567	\$1,051,567
							TOTAL	\$14,379,222

Appendix J4: Cost Estimate for Weir System in Brown Hill Creek Recreation Reserve

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	DIRECT COST	CONTINGENCY	TOTAL	
				\$	\$	%		Sub-total
1	PRELIMINARIES			20%				\$1,175,404
1.01	Contractor's supervision	Item	Included					
1.02	Site Establishment	Item	Included					
1.03	Site Running Costs	Item	Included					
1.04	Plant and Equipment	Item	Included					
1.05	Fees & Charges (Including insurances)	Item	Included					
1.06	Other - Construct Haul Roads	Item	Included					
2	DIVERSION CONTROL AND WATER SUPPLY DURING CONSTRUCTION							\$370,400
2.01	Cofferdam (x3)							
2.02	Strip embankment crest - 1.0m depth	m ³	2,600	12	32,474	25	40,593	
2.03	Raise Embankments 2m with selected fill	m ³	1,300	55	71,500	25	89,375	
2.04	Spillway Construction	LS	3	6,245	18,735	25	23,419	
2.05	DN200 PVC Water Supply Pipeline	m	750	187	140,513	25	175,641	
2.06	Pump Set + Power	LS	1	24,980	24,980	25	31,225	
2.07	Remove cofferdams from channel	m ³	1,300	6	8,119	25	10,148	

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	DIRECT COST	CONTINGENCY	TOTAL	
				\$	\$	%		Sub-total
3	EXCAVATION AND EARTHWORKS							\$151,882
	Embankment, Abutment and Borrow							
3.01	Clearing	m²	7,140	4	26,754	25	33,442	
3.02	Topsoil stripping - 150 mm depth	m ³	1,071	9	10,033	25	12,541	
3.03	Excavate Borrow Material	m³	7,854	6	49,048	25	61,310	
3.04	Special cleanoff of foundation (10% of stripping)	m²	1,428	25	35,671	25	44,589	
4	WEIR CONSTRUCTION							\$4,281,990
4.01	Weir core - roller compacted concrete	m ³	8,400	226	1,896,905	25	2,371,131	
4.02	Spillway, abutments and precast concrete wall finishes - reinforced	m ³	1,831	835	1,528,688	25	1,910,859	
5	CONCRETE IN STRUCTURES							\$616,674
	Outlet Works							
5.01	Concrete in d/s outlet & dissipator	m ³	198	1,374	272,032	25	340,040	
5.02	Outlet pipes - 1600/1700 mm RCP	m	90	1,632	146,836	25	183,544	
5.03	Upstream headwall	No.	9	6,245	56,205	25	70,256	
5.04	Construct scour outlet rock protection	m ³	225	81	18,267	25	22,833	
6	FENCING and SIGNAGE							\$18,579
6.01	Supply and install fencing and signage around the site	Item	1	14,863	14,863	25	18,579	
7	PROPERTY ACQUISITION							\$1,906,750
7.01	Property acquisition	m²	44,600	23	1,525,400	25	1,906,750	
	CAPITAL COST ESTIMATE TOTAL				\$ 5,877,021			\$8,521,680
	INVESTIGATION, DESIGN & PROJECT MANAGEMENT	Item	5,527,025	10%	552,702	25	690,878	\$690,878
	1			I			TOTAL	\$9,212,558

Appendix J5: Cost Estimate for Overland Flow Interceptor Culvert at Glenelg Tramway, for use with Flood Control Dam at Site 2

NOTE:

ltem	Description	Quantity	Unit	Rate (\$)	Costs (\$)
1	Overheads & Preliminaries	1	Item	5%	\$127,347
2	Trenching, laying, backfill and reinstate				
	1800mm x 1200mm RCBC	612	m	\$2,762	\$1,690,389
3	Headwall - inlet & outlet works	2	Item	\$24,980	\$49,960
4	Lintels - kerb and gutter works	50	m	\$1,200	\$60,000
5	Bunding for lintel drainage basin	84	= m ³	\$50	\$4,197
6	Sag pits for lintel drainage basin	4	item	\$2,483	\$9,932
7	Upgrade of culvert under Tramway and culvert under railway	1	Item	\$300,000	\$300,000
8	Service Relocation	1	Item	15%	\$253,558
9	Traffic Control	1	Item	\$176,397	\$176,397
10	Domestic Service Connection Relocations	2	no	\$1,249	\$2,498
	Sub-Total				\$2,674,278
	Design Costs			20%	\$534,856
	Contingency			25%	\$668,570
				TOTAL	\$3,877,704

Appendix J6: Cost Estimate for Channel Upgrade between Leah St and Anzac Hwy (Flood Control Dam Scenario)

ltem	Description	Quantity	Unit	Rate	Costs
				(\$)	(\$)
1	Overheads & Preliminaries	1	Item	5%	\$333,441
2	Tree removal	0.5	km	\$25,000	\$12,325
3	Construct Coffer Dam to existing channel to allow water to be	3	No	\$25,000	\$75,000
	diverted around live construction site -				
4	Construct vehicle & equipment access ramp to channel floor	4	No	\$20,000	\$80,000
5	Pump & generator hire	78	Day	\$500	\$38,727
6	Purchase 500m of 200mm dia hose	500	m	\$144	\$71,818
7	Clamps & connectors to suit 200mm dia.hose	50	No	\$175	\$8,743
8	Set up pumps & hoses	2	day	\$749	\$1,499
9	Demolish existing Concrete walls	749	m ³	\$187	\$140,393
10	Remove concrete to tip	749	m ³	\$37	\$28,079
11	Excavate sides of channel x 493m length	4930	m ³	\$44	\$215,515
12	Disposal of soil	5670	m ³	\$37	\$212,436
13	Lay 200mm Blinding Concrete under panels	1055	m ³	\$350	\$368,962
14	Prefabricated Concrete Walls & Floor Panels x 593 panels	5275	m²	\$387	\$2,042,466
	including labour				
15	Cranage to assist with Concrete Panel installation	593	Hrs	\$225	\$133,253
16	Road Crossings (incl. material supply)				
а	Charles Street	1	Item	\$200,000	\$200,000
b	Leah Street	1	Item	\$50,000	\$50,000
С	First Avenue	1	Item	\$200,000	\$200,000
d	Second Avenue	1	Item	\$200,000	\$200,000
е	ANZAC Highway	1	Item	\$1,000,000	\$1,000,000
17	Service Relocation for bridge crossings	1	Item	5%	\$82,500
18	Traffic Control	1	Item	\$142,098	\$142,098
19	Property acquisition/easements	2730	m²	\$500	\$1,365,000
	Sub-Total				\$7,002,252
	Design Costs			20%	\$1,400,450
	Contingency			25%	\$1,750,563
				TOTAL	\$10,153,265

Appendix J7: Cost Estimate for Overland Flow Collector Drain at Mitchell St

NOTE:

ltem	Description	Quantity	Unit	Rate (\$)	Costs (\$)
1	Overheads & Preliminaries	1	Item	5%	\$60,679
2	Trenching, laying, backfill and reinstate				
	1350mm RCP	534	m	\$1,518	\$810,364
3	Headwall - inlet & outlet works	2	Item	\$24,980	\$49,960
4	Lintels - kerb and gutter works	44	m	\$1,200	\$52,800
5	Service Relocation	1	Item	15%	\$121,555
6	Traffic Control	1	Item	\$153,915	\$153,915
7	Domestic Service Connection Relocations	20	no	\$1,249	\$24,980
	Sub-Total				\$1,274,252
	Design Costs			20%	\$254,850
	Contingency			25%	\$318,563
				TOTAL	\$1,847,666

Appendix J8: Cost Estimate for High-Flow Bypass Culvert between Mitchell St and Railway

NOTE:

ltem	Description	Quantity	Unit	Rate (\$)	Costs (\$)
1	Overheads & Preliminaries	1	Item	5%	\$122,102
2	Trenching, laying, backfill and reinstate				
	1800mm x 1500mm RCBC	557	m	\$3,453	\$1,923,094
3	Headwall - inlet & outlet works	2	Item	\$24,980	\$49,960
4	Service Relocation	1	Item	\$288,464	\$288,464
5	Traffic Control	1	Item	\$160,545	\$160,545
6	Domestic Service Connection Relocations	16	no	\$1,249	\$19,984
	Sub-Total				\$2,564,149
	Design Costs			20%	\$512,830
	Contingency			25%	\$641,037
				TOTAL	\$3,718,016

Appendix J9: Cost Estimate for High-Flow Bypass Culvert between Victoria St and Glenelg Tramway

NOTE:

ltem	Description	Quantity	Unit	Rate (\$)	Costs (\$)
1	Overheads & Preliminaries	1	Item	5%	\$81,937
2	Trenching, laying, backfill and reinstate				
	1800mm x 1500mm RCBC	263	m	\$3,453	\$908,032
3	Headwall - inlet & outlet works	2	Item	\$24,980	\$49,960
4	Upgrade of culvert under Tramway	1	Item	\$150,000	\$150,000
5	Railway Line near Victoria St Bridge	1	Item	\$300,000	\$300,000
6	Service Relocation	1	Item	\$136,205	\$136,205
7	Traffic Control	1	Item	\$75,805	\$75,805
8	Domestic Service Connection Relocations	15	no	\$1,249	\$18,735
	Sub-Total				\$1,720,673
	Design Costs			20%	\$344,135
	Contingency			25%	\$430,168
				TOTAL	\$2,494,976

Appendix J10: Cost Estimate for Overland Flow Interceptor Culvert at Glenelg Tramway (no upper catchment detention)

ltem	Description	Quantity	Unit	Rate (\$)	Costs (\$)
1	Overheads & Preliminaries	1	Item	5%	\$204,045
2	Trenching, laying, backfill and reinstate				
	2100mm x 1800mm RCBC	612	m	\$4,834	\$2,958,182
3	Headwall - inlet & outlet works	2	Item	\$24,980	\$49,960
4	Lintels - kerb and gutter works	103	m	\$1,200	\$123,600
5	Bunding for lintel drainage basin	84	m ³	\$50	\$4,197
6	Sag pits for lintel drainage basin	9	item	\$2,483	\$22,347
7	Upgrade of culvert under Tramway and culvert under railway	1	ltem	\$300,000	\$300,000
8	Service Relocation	1	Item	15%	\$443,727
9	Traffic Control	1	Item	\$176,397	\$176,397
10	Domestic Service Connection Relocations	2	no	\$1,249	\$2,498
	Sub-Total				\$4,284,953
	Design Costs			20%	\$856,991
	Contingency			25%	\$1,071,238
				TOTAL	\$6,213,182

Appendix J11: Cost Estimate for Brown Hill Creek Channel Upgrade between Leah St and Anzac Hwy (no upper catchment detention)

Item	Description	Quantity	Unit	Rate	Costs
					(\$)
1	Overheads & Preliminaries	1	ltem	5%	\$342,103
2	Tree removal	0.5	km	\$25,000	\$12,325
3	Construct Coffer Dam for existing channel to allow water to be	3	No	\$25,000	\$75,000
	diverted around live construction site -				
4	Construct vehicle & equipment access ramp to channel floor	4	No	\$20,000	\$80,000
5	Pump & generator hire	76	Day	\$500	\$37,893
6	Purchase 500m of 200mm dia hose	500	m	\$144	\$71,818
7	Clamps & connectors to suit 200mm dia.hose	50	No	\$175	\$8,743
8	Set up pumps & hoses	2	day	\$750	\$1,500
9	Demolish existing Concrete walls	749	m ³	\$187	\$140,393
10	Remove concrete to tip	749	m ³	\$37	\$28,079
11	Excavate sides of channel x 493m length	3944	m ³	\$44	\$172,412
12	Raise top of channel banks	789	m ³	\$50	\$39,408
13	Disposal of soil	3659	m³	\$37	\$137,109
14	Lay 200mm Blinding Concrete under panels	1134	m ³	\$350	\$396,548
15	Prefabricated Concrete Walls & Floor Panels x 638 panels	5670	m²	\$400	\$2,267,800
	including labour				
16	Cranage to assist with Concrete Panel installation	638	Hrs	\$225	\$143,435
17	Road Crossings (incl. material supply)				
а	Charles Street	1	ltem	\$200,000	\$200,000
b	Leah Street	1	Item	\$50,000	\$50,000
С	First Avenue	1	ltem	\$200,000	\$200,000
d	Second Avenue	1	ltem	\$200,000	\$200,000
е	ANZAC Highway	1	ltem	\$1,000,000	\$1,000,000
18	Service Relocation for bridge crossings	1	ltem	5%	\$72,500
19	Traffic Control	1	ltem	\$142,098	\$142,098
20	Property acquisition/easements	2730	m ²	\$500	\$1,365,000
	Sub-Total				\$7,184,162
	Design, Project Management, Consultation			20%	\$1,436,832
	Contingency			25%	\$1,796,040
				TOTAL	\$10,417.000

Appendix J12: Cost Estimate for Brown Hill Creek Channel Upgrade between Hampton St and Cross Rd (no upper catchment detention)

ltem	Description	Quantity	Unit	Rate	Costs (\$)
1	Overheads & Preliminaries		ltem	5%	\$85.419
2	Tree removal	0.2	km	\$25,000	\$5,500
3	Construct Coffer Dam to existing channel to allow water to be	1	No	\$25,000	\$25,000
	diverted around live construction site -				. ,
4	Construct vehicle & equipment access ramp to channel floor	1	No	\$20,000	\$20,000
5	Pump & generator hire	34	Day	\$500	\$16,910
6	Purchase 500m of 200mm dia hose	500	m	\$144	\$71,818
7	Clamps & connectors to suit 200mm dia.hose	50	No	\$175	\$8,743
8	Set up pumps & hoses	2	day	\$749	\$1,499
9	Excavate sides of channel	1128	m³	\$44	\$49,313
10	Raise top of channel banks	660	m ³	\$50	\$32,974
11	Surface treatement of excavated sections (compaction etc)	3190	m²	\$5.00	\$15,950
12	Disposal of soil	564	m ³	\$37	\$21,130
13	Revegate banks	3190	m²	\$12	\$39,843
14	Road Crossings (incl. material supply)				
а	Hampton St	1	ltem	\$400,000	\$400,000
15	Service Relocation for bridge crossings		Item	5%	\$20,000
16	Traffic Control	1	Item	\$63,411	\$63,411
17	Property acquisition/easements	1833	m²	\$500	\$916,300
	Sub-Total				\$1,793,809
	Design, Project Management, Consultation			30%	\$538,143
	Contingency			25%	\$448,452
				TOTAL	\$2,780,000

NOTE:

Appendix J13: Cost Estimate for Overland Flow Interceptor Culvert at Leader St

ltem	Description	Quantity	Unit	Rate (\$)	Costs (\$)
1	Overheads & Preliminaries	1	Item	5%	\$74,099
2	Trenching, laying, backfill and reinstate				
	1800mm x 1500mm RCBC	365	m	\$3,453	\$1,260,196
3	Headwall - inlet & outlet works	1	Item	\$24,980	\$24,980
4	Lintels - kerb and gutter works	164	m	\$1,200	\$196,800
	Sub-Total				\$1,556,075
	Design Costs			20%	\$311,215
	Contingency			25%	\$389,019
				TOTAL	\$2,256,309

Appendix J14: Cost Estimate for Overland Flow Interceptor Culvert at Third Avenue

NOTE:

Item	Description	Quantity	Unit	Rate (\$)	Costs (\$)
1	Overheads & Preliminaries	1	Item	5%	\$39,035
2	Trenching, laying, backfill and reinstate				
	1800mm x 1200mm RCBC	200	m	\$2,762	\$552,415
3	Headwall - inlet & outlet works	1	Item	\$24,980	\$24,980
4	Lintels - kerb & gutter works	44	m	\$1,200	\$52,800
5	Service Relocation	1	Item	\$82,862	\$82,862
6	Traffic Control	1	Item	\$57,646	\$57,646
7	Domestic Service Connection Relocations	8	no	\$1,249	\$9,993
	Sub-Total				\$819,731
	Design Costs Contingency			20% 25%	\$163,946 \$204,933
				TOTAL	\$1,188,610

Appendix J15: Cost Estimate for Brown Hill Creek Channel Upgrade between Third Ave and Anzac Hwy (for use with Leader St and Third Ave Interceptors)

NOTE:

ltem	Description	Quantity	Unit	Rate	Costs
				(\$)	(\$)
1	Overheads & Preliminaries	1	Item	5%	\$137,404
2	Tree removal	0.2	km	\$24,980	\$3,997
3	Construct Coffer Dam to existing channel to allow water to be	1	No	\$24,980	\$24,980
	diverted around live construction site -				
4	Construct vehicle & equipment access ramp to channel floor	1	No	\$18,735	\$18,735
5	Pump & generator hire	25	Day	\$500	\$12,569
6	Purchase 500m of 200mm dia hose	250	m	\$144	\$35,909
7	Clamps & connectors to suit 200mm dia.hose	50	No	\$175	\$8,743
8	Set up pumps & hoses	2	day	\$749	\$1,499
9	Demolish existing Concrete walls	243	m³	\$187	\$45,564
10	Remove concrete to tip	243	m ³	\$37	\$9,113
11	Excavate sides of channel x 493m length	1280	m³	\$44	\$55,955
12	Raise top of channel banks	256	m³	\$50	\$12,790
13	Disposal of soil	1188	m³	\$37	\$44,498
14	Lay 200mm Blinding Concrete under panels	368	m³	\$350	\$128,697
15	Prefabricated Concrete Walls & Floor Panels x 207 panels	1840	m²	\$387	\$712,430
	including labour				
16	Cranage to assist with Concrete Panel installation	207	Hrs	\$225	\$46,480
17	Road Crossings (incl. material supply)				
а	ANZAC Highway	1	Item	\$1,000,000	\$1,000,000
18	Service Relocation	1	Item	5%	\$50,000
19	Traffic Control	1	Item	\$46,117	\$46,117
20	Property acquisition	980	m ²	\$500	\$490,000
	Sub-Total				\$2,885,477
	Design Costs			20%	\$577,095
	Contingency			25%	\$721,369
				TOTAL	\$4,183,941

Appendix J16: Cost Estimate for Brown Hill Creek Flood Control Dam at Site 1 (Spillway Height = 12 metres)

This cost estimate has been adapted from the 2006 Master Plan, with materials and quantities altered to suit. Rates have been inflated to represent 2011 dollars. Detailed survey and geotechnical information is required to prepare a detailed cost estimate. Estimate based on earth embankment design with separate spillway.

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	DIRECT COST	CONTINGENCY	TOTAL	
				\$	\$	%		Sub-total
1	PRELIMINARIES			20%				\$1,299,926
1.01	Contractor's supervision	Item						
1.02	Site Establishment	Item						
1.03	Site Running Costs	Item						
1.04	Plant and Equipment	Item						
1.05	Fees & Charges (Including insurances)	Item						
1.06	Other - Construct Haul Roads	Item						
2	DIVERSION CONTROL AND WATER SUPPLY DURING CONSTRUCTION							\$275,024
2.01	Cofferdam							
2.02	Strip embankment crest - 1.0m depth	m ³	2,070	12	25,854	25	32,318	
2.03	Raise Embankment 4m with selected fill	m ³	1,600	55	88,000	25	110,000	
2.04	Spillway Construction	LS	1	6,245	6,245	25	7,806	
2.05	DN200 PVC Water Supply Pipeline	m	400	187	74940	25	93,675	
2.06	Pump Set + Power	LS	1	24980	24980	25	31,225	
3	EXCAVATION AND EARTHWORKS							\$1,623,643
	Embankment, Abutment and Borrow							
3.01	Clearing	m ²	9,750	3.75	36,533	25	45,667	
3.02	Topsoil stripping - 150 mm depth	m ³	1,463	9.37	13,700	25	17,125	
3.03	Excavate Borrow Material	m ³	8,288	6.25	51,797	25	64,746	
3.04	Special cleanoff of foundation	m²	1,950	25	48,711	25	60,889	
	Outlet Works							
3.05	Excavation for pipe - soil	m ³	1,172	17.50	20,508	25	25,635	
3.06	Excavation for pipe - rock	m ³	3,828	34.20	130,922	25	163,652	

NOTE:

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	DIRECT COST	CONTINGENCY	TOTAL	
				\$	\$	%		Sub-total
	Spillway							
3.07	Excavation of Top Soil for Spillway Approach and Chute	m ³	1,763	9.37	16,510	25	20,638	
3.08	Excavation for Spillway in Soil	m ³	9,988	17.35	173,283	25	216,604	
3.09	Excavation for Spillway in Rock	m ³	23,500	34.20	803,700	25	1,004,625	
3.10	Excavation for Invert Drains and Joints	m ³	130	25.00	3,250	25	4,063	
4	DRAINAGE							\$29,227
4.01	Construct stone pitched drains along rock toe	m ²	208	112.41	23,381	25	29,227	
5	EMBANKMENT CONSTRUCTION							\$3,736,429
5.01	Conduct roller trial.	m ³	200	55.00	11,000	25	13,750	
5.02	Embankment core (selected fill material)	m ³	11,550	90.00	1,0 <mark>3</mark> 9,500	25	1,299,375	
5.03	Embankment - upstream & downstream fill material	m ³	32,700	55.00	1,798,500	25	2,248,125	
5.04	Construct rock toe	m ³	936	62.45	58,453	25	73,067	
5.05	Topsoil spreading	m²	2,311	6.87	15,876	25	19,845	
5.06	Rip Rap on upstream face (500mm thick)	m ³	520	124.90	64,948	25	81,185	
5.07	Hydromulching and pulping	ha	0.23	3,747.00	866	25	1,082	
6	INSTRUMENTATION							\$10,929
	Dam instrumentation, supply and install (GIS)							
6.01	Supply & Install Rain gauge (pluviograph)	No.	1	3,123	3,123	25	3,903	
6.02	Supply & Install Water level monitor	No.	1	5,621	5,621	25	7,026	
7	CONCRETE IN STRUCTURES							\$338,487
	Outlet Works							
7.01	Concrete in d/s outlet & dissipator	m ³	22	1,374	30,226	25	37,782	
7.02	Outlet pipe - 1450 mm RCP	m	120	1,885	226,200	25	282,750	
7.03	Upstream headwall	No.	1	6,245	6,245	25	7,806	
7.04	Construct scour outlet rock protection	m ³	100	81	8,119	25	10,148	

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	DIRECT COST	CONTINGENCY	TOTAL	
				\$	\$	%		Sub-total
8	GEOTEXTILES and PLASTICS							\$14,051
8.01	Supply and install filter fabric "Bidim A44" for Rock Toe.	m²	2,000	5.62	11,241	25	14,051	
-								
9	RUADWORKS							\$856,149
	Crest access road							
9.01	Trim, level, grade surface	m²	520	7.00	3,640	25	4,550	
9.02	Basecourse material	m ²	520	50	25,979	25	32,474	
9.03	Bitumen sealing	m ²	520	15	7,800	25	9,750	
	Relocation of Brown Hill Creek Road							
9.04	Excavation for road	m ³	15,000	17.50	262,500	25	328,125	
9.05	Country highway - two lanes	m	1,000	385	-385,000	25	481,250	
10	FENCING and SIGNAGE							\$31,225
10.01	Supply and install fencing and signage around the spillway	Item	1	18,735	18,735	25	23,419	
10.02	Supply and install fencing and signage around the site	Item	1	6,245	6,245	25	7,806	
11								\$1 200 375
11.01	Droporty acquisition	2	42.000	22	967 500	25	1 200 275	\$1,207,373
11.01		m	43,000	23	907,500	23	1,207,373	
	CAPITAL COST ESTIMATE TOTAL				\$ 6,499,630			\$9,424,464
	INVESTIGATION, DESIGN & PROJECT MANAGEMENT	Item	6,832,057	10%	683,206	25	854,007	\$854,007
			1	1	11		TOTAL	\$10,278,471

Appendix J17: Cost Estimate for High-Flow Bypass Culvert from Malcolm Street to Glenelg Tramway

NOTE:

ltem	Description	Quantity	Unit	Rate (\$)	Costs (\$)
1	Overheads & Preliminaries	1	Item	5%	\$368,734
2	Trenching, laying, backfill and reinstate				
	1800mm x 1500mm RCBC	1668	m	\$3,453	\$5,758,925
3	Headwall - inlet & outlet works	2	Item	\$24,980	\$49,960
4	Culvert upgrade at tramway	1	Item	\$150,000	\$150,000
5	Service Relocation	1	Item	\$863,839	\$863,839
6	Traffic Control	1	Item	\$480,769	\$480,769
7	Domestic Service Connection Relocations	57	no	\$1,249	\$71,193
	Sub-Total				\$7,743,420
	Design Costs			20%	\$1,548,684
	Contingency			25%	\$1,935,855
				TOTAL	\$11,227,959

Appendix J18: Cost Estimate for Brown Hill Creek Channel Upgrade between Hampton St and Cross Rd (reduced upper catchment detention)

NOTE:

ltem	Description	Quantity	Unit	Rate	Costs
1	Overheads & Preliminaries	1	ltem	5%	\$82,310
2	Construct Coffer Dam to existing Channel to allow water to be	1	No	\$24,980	\$24,980
_	diverted around live construction site			<i> </i>	¢,000
3	Construct vehicle & equipment access ramp to channel floor	1	No	\$18,735	\$18,735
4	Pump & generator hire	90	Day	\$500	\$44,964
5	Purchase 500m of 200mm dia hose	300	m	\$144	\$43,091
6	Clamps & connectors to suit 200mm dia.hose	30	No	\$175	\$5,246
7	Set up pumps & hoses	2	day	\$749	\$1,499
8	Trim existing unlined walls x 255m	205	m ³	\$187	\$38,407
9	Earthworks to Base Level & sides (incld support)	2040	m ³	\$94	\$191,097
10	Disposal of soil	2245	m ³	\$37	\$84,120
11	Install trench support (Closed Boarding) - avg2.4m high	1224	m ²	\$37	\$45,863
12	Allow 200mm FCR compacted to Culvert floor	255	m ³	\$75	\$19,110
13	Lay 200mm Blinding Concrete under panels	255	m ³	\$350	\$89,179
14	Construct Base Slab	255	m ³	\$525	\$133,768
15	Pour Concrete Walls, incl labour	350	m ³	\$1,374	\$480,865
16	Property Acquisition	8	Item	\$37,470	\$299,760
17	Traffic Control	1	Item	\$84,308	\$84,308
18	Service Location	1	Item	\$31,225	\$31,225
19	Domestic Service Connection Relocations	8	no	\$1,249	\$9,992
	Sub-Total				\$1,728,517
	Design Costs			30%	\$518,555
	Contingency			25%	\$432,129
				TOTAL	\$2,679,202

Appendix J19: Cost Estimate for Brown Hill Creek Channel Upgrade between Victoria St and Glenelg Tramway (as part of complete channel upgrade)

ltem	Description	Quantity	Unit	Rate	Costs (\$)
1	Overheads & Preliminaries		Item	5%	\$156,860
2	Tree removal	0.2	km	\$25,000	\$5,625
3	Construct Coffer Dam for existing channel to allow water to be	1	No	\$25,000	\$25,000
	diverted around live construction site -				
4	Construct vehicle & equipment access ramp to channel floor	2	No	\$20,000	\$40,000
5	Pump & generator hire	35	Day	\$500	\$17,294
6	Purchase 500m of 200mm dia hose	500	m	\$144	\$71,818
7	Clamps & connectors to suit 200mm dia.hose	50	No	\$175	\$8,743
8	Set up pumps & hoses	2	day	\$750	\$1,500
9	Demolish existing Concrete walls	322	m ³	\$187	\$60,256
10	Remove concrete to tip	322	m ³	\$37	\$12,051
11	Excavate sides of channel	1010	m ³	\$44	\$44,168
12	Raise top of channel banks	8	m³	\$50	\$420
13	Disposal of soil	1153	m³	\$37	\$43,187
14	Lay 200mm Blinding Concrete under panels	411	m³	\$350	\$143,700
15	Prefabricated Concrete Walls & Floor Panels x 231 panels	2055	m²	\$400	\$821,800
	including labour				
16	Cranage to assist with Concrete Panel installation	231	Hrs	\$225	\$51,933

ltem	Description	Quantity	Unit	Rate	Costs
		_			(\$)
17	Road Crossings (incl. material supply)				
а	Railway Line near Victoria St Bridge	1	Item	\$300,000	\$300,000
b	Factory over channel downstream of Victoria St	1	ltem	\$300,000	\$300,000
С	Bridge under Glenelg tramway	1	Item	\$300,000	\$300,000
18	Service Relocation for bridge crossings		Item	5%	\$45,000
19	Traffic Control	1	Item	\$64,852	\$64,852
20	Property acquisition/easements	1560	m ²	\$500	\$779,850
	Sub-Total				\$3,294,056
	Design, Project Management, Consultation			30%	\$988,217
	Contingency			25%	\$823,514
				TOTAL	\$5,106,000

Appendix J20: Cost Estimate for Brown Hill Creek Channel Upgrade between Cranbrook Ave and Railway (as part of complete channel upgrade)

ltem	Description	Quantity	Unit	Rate	Costs
					(\$)
1	Overheads & Preliminaries		Item	5%	\$112,803
2	Tree removal	0.2	km	\$25,000	\$5,225
3	Construct Coffer Dam for existing channel to allow water to be	1	No	\$25,000	\$25,000
	diverted around live construction site -				
4	Construct vehicle & equipment access ramp to channel floor	1	No	\$20,000	\$20,000
5	Pump & generator hire	32	Day	\$500	\$16,064
6	Purchase 500m of 200mm dia hose	500	m	\$144	\$71,818
7	Clamps & connectors to suit 200mm dia.hose	50	No	\$175	\$8,743
8	Set up pumps & hoses	2	day	\$750	\$1,500
9	Demolish existing Concrete walls	301	m ³	\$187	\$56,385
10	Remove concrete to tip	301	m³	\$37	\$11,277
11	Excavate sides of channel	927	m ³	\$44	\$40,542
12	Disposal of soil	1067	m ³	\$37	\$39,963
13	Lay 200mm Blinding Concrete under panels	372	m ³	\$350	\$130,103
14	Prefabricated Concrete Walls & Floor Panels x 209 panels	1860	m²	\$400	\$744,040
	including labour				
15	Cranage to assist with Concrete Panel installation	209	Hrs	\$225	\$46,987
16	Road Crossings (incl. material supply)				
а	Cranbrook Ave	1	Item	\$200,000	\$200,000
17	Service Relocation for bridge crossings	1	Item	5%	\$8,000
18	Traffic Control	1	Item	\$60,240	\$60,240
19	Property acquisition/easements	1540	m²	\$500	\$770,165
	Sub-Total				\$2,368,855
	Design, Project Management, Consultation			30%	\$710,657
	Contingency			25%	\$592,214
				TOTAL	\$3,672,000

Appendix J21: Cost Estimate for Brown Hill Creek Channel Upgrade between Victoria Ave and Mitchell St (as part of complete channel upgrade)

NOTE:

ltem	Description	Quantity	Unit	Rate	Costs
1	Overheads & Preliminaries		ltem	5%	(ə) \$329 397
2		1.0	km	\$25,000	\$25,900
3	Construct Coffer Dam for existing channel to allow water to be	5	No	\$25,000	\$125,000
.	diverted around live construction site -			\$20,000	¢120,000
4	Construct vehicle & equipment access ramp to channel floor	5	No	\$20,000	\$100,000
5	Pump & generator hire	159	Day	\$500	\$79,629
6	Purchase 500m of 200mm dia hose	500	m	\$144	\$71,818
7	Clamps & connectors to suit 200mm dia.hose	50	No	\$175	\$8,743
8	Set up pumps & hoses	2	day	\$750	\$1,500
9	Demolish existing Concrete walls	21	m ³	\$187	\$3,991
10	Remove concrete to tip	21	m ³	\$37	\$798
11	Excavate sides of channel	4123	m ³	\$44	\$180,227
12	Raise top of channel banks	166	m³	\$50	\$8,293
13	Surface treatement of excavated sections (compaction etc)	5975	m²	\$5.00	\$29,873
14	Disposal of soil	4557	m³	\$37	\$170,741
15	Lay 200mm Blinding Concrete under panels	33	m ³	\$350	\$11,646
16	Prefabricated Concrete Walls & Floor Panels x 19 panels	167	m²	\$400	\$66,600
	including labour				
17	Cranage to assist with Concrete Panel installation	19	Hrs	\$225	\$4,272
18	Revegate banks	5975	m²	\$12	\$74,622

Item	Description	Quantity	Unit	Rate	Costs (\$)
19	Road Crossings (incl. material supply)				
а	Victoria Ave	1	Item	\$650,000	\$650,000
b	Northgate St	1	Item	\$200,000	\$200,000
С	Malcolm St	1	Item	\$200,000	\$200,000
d	Avenue St	1	Item	\$200,000	\$200,000
е	Regent St	1	Item	\$200,000	\$200,000
f	Percy & Douglas St Pedestrian Bridge	1	Item	\$100,000	\$100,000
g	St Joseph Orphanage Bridge	1	Item	\$200,000	\$200,000
20	Service Relocation for bridge crossings		Item	5%	\$87,500
21	Traffic Control	1	Item	\$298,607	\$298,607
22	Property acquisition/easements	3488	m ²	\$1,000	\$3,488,190
	Sub-Total				\$6,917,344
	Design, Project Management, Consultation			30%	\$2,075,203
	Contingency			25%	\$1,729,336
				TOTAL	\$10,722,000

Appendix J22: Cost Estimate for Brown Hill Creek Channel Upgrade between Cross Rd and Heywood Ave (as part of complete channel upgrade)

NOTE:

ltem	Description	Quantity	Unit	Rate	Costs (\$)
1	Overheads & Preliminaries		ltem	5%	\$140,945
2	Tree removal	0.4	km	\$25,000	\$9,325
3	Construct Coffer Dam for existing channel to allow water to be	2	No	\$25,000	\$50,000
	diverted around live construction site -				
4	Construct vehicle & equipment access ramp to channel floor	1	No	\$20,000	\$20,000
5	Pump & generator hire	57	Day	\$500	\$28,669
6	Purchase 500m of 200mm dia hose	500	m	\$144	\$71,818
7	Clamps & connectors to suit 200mm dia.hose	50	No	\$175	\$8,743
8	Set up pumps & hoses	2	day	\$750	\$1,500
9	Excavate sides of channel	549	m ³	\$44	\$23,980
10	Raise top of channel banks	493	m ³	\$50	\$24,618
11	Surface treatement of excavated sections (compaction etc)	2814	m²	\$5.00	\$14,068
12	Disposal of soil	83	m ³	\$37	\$3,123
13	Revegate banks	2814	m²	\$12	\$35,142
14	Road Crossings (incl. material supply)				
а	Cross Rd	1	Item	\$1,400,000	\$1,400,000
b	Factory over channel downstream of Cross Rd	1	Item	\$300,000	\$300,000
С	Heywood Ave	1	Item	\$200,000	\$200,000
15	Service Relocation for bridge crossings		Item	5%	\$95,000
16	Traffic Control	1	Item	\$107,510	\$107,510
17	Property acquisition/easements	851	m²	\$500	\$425,400
	Sub-Total				\$2,959,840
	Design, Project Management, Consultation			30%	\$887,952
	Contingency			25%	\$739,960
				TOTAL	\$4,588,000

Appendix J23: Cost Estimate for Brown Hill Creek Channel Upgrades between Muggs Hill Rd and Devonshire St (as part of complete channel upgrade)

NOTE: This cost estimate has been adapted from the 2006 Master Plan, with materials and quantities altered to suit. Rates have been inflated to represent 2011 dollars. Detailed survey and geotechnical information is required to prepare a detailed cost estimate.

ltem	Description	Quantity	Unit	Rate	Costs (\$)
1	Overheads & Preliminaries		Item	5%	\$83,874
2	Tree removal	1.0	km	\$25,000	\$25,950
3	Construct Coffer Dam to existing channel to allow water to be	5	No	\$25,000	\$125,000
	diverted around live construction site -				
4	Construct vehicle & equipment access ramp to channel floor	4	No	\$20,000	\$80,000
5	Pump & generator hire	160	Day	\$500	\$79,782
6	Purchase 500m of 200mm dia hose	500	m	\$144	\$71,818
7	Clamps & connectors to suit 200mm dia hose	50	No	\$175	\$8,743
8	Set up pumps & hoses	2	day	\$749	\$1,499
9	Excavate sides of channel	1163	m ³	\$44	\$50,828
10	Surface treatement of excavated sections (compaction etc)	7051	m ²	\$5.00	\$35,253
11	Disposal of soil	1337	m ³	\$37	\$50,102
12	Revegate banks	7051	m²	\$12	\$88,062
13	Road Crossings (incl. material supply)				
а	Constriction at Paisley Ave	1	Item	\$250,000	\$250,000
b	Access bridges to residences	3	Item	\$25,000	\$75,000
С	Devonshire St	1	Item	\$400,000	\$400,000
14	Service Relocation for bridge crossings		Item	5%	\$36,250
15	Traffic Control	1	Item	\$299,184	\$299,184
16	Property acquisition/easements	8050	m ²	\$500	\$4,024,945
	Sub-Total				\$5,786,289
	Design, Project Management, Consultation			30%	\$1,735,887
	Contingency			25%	\$1,446,572
				TOTAL	\$8,969,000

Appendix J24: Cost Estimate for Additional Bridge Upgrades along Brown Hill Creek (as part of complete channel upgrade)

ltem	Description	Quantity	Unit	Rate	Costs (\$)
1	Overheads & Preliminaries		Item	5%	\$103,750
2	Road Crossings (incl. material supply)				
а	Fife/Lochwinndoch Ave	1	Item	\$400,000	\$400,000
b	Ayr Ave	1	Item	\$250,000	\$250,000
С	Whistler Ave pedestrian access bridge	1	Item	\$25,000	\$25,000
d	Goodwood Rd	1	Item	\$1,400,000	\$1,400,000
3	Service Relocation		Item	5%	\$103,750
4	Traffic Control		Item	10%	\$207,500
	Sub-Total				\$2,490,000
	Design, Project Management, Consultation			20%	\$498,000
	Contingency			25%	\$622,500
				TOTAL	\$3,611,000

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Appendix K - 2011 Draft SMP - Part B Works

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

K1. PART B WORKS – 2011 DRAFT SMP

The following flood mitigation works for upper Brown Hill Creek were identified and presented in the 2011 Draft SMP. Estimated costs are in 2011 dollars.

As discussed in Section 3.3, the catchment councils have agreed to a strategy and process for determining a final mitigation scenario for upper Brown Hill Creek. This includes investigations of alternatives to the components described below, specifically involving options that exclude the dam.

The proposed channel upgrade between Leah Street and Anzac Highway is proposed to be undertaken as part of the Part A mitigation works and is therefore documented in Section 12 of the SMP.

K1.1 FLOOD CONTROL DAM

Features of the proposed flood control dam in Brownhill Creek Recreation Park are as follows:

- Located at Site 1 (*refer* **Figure 20**).
- Height to spillway level is approximately 12 metres, which represents the peak level of storage during the 100 year ARI 36 hour critical duration storm. During an event of this magnitude it is expected that the water level would temporarily inundate an area of up to 24,000 m² for up to 12 hours.
- The storage volume at the spillway level is approximately 110 ML.
- The peak 100 year ARI flow of 26.1 m³/s at Scotch College would be reduced to 19.5 m³/s for the 36 hour critical duration storm.
- It is assumed that during normal flow events (*i.e. less than a 5 year ARI flood*) water may be stored behind the flood control dam to a depth of one metre for two to three hours. Such an event is likely to be contained largely within the existing creek channel, thereby having minimal effect on flora and fauna on the upstream side of the dam.
- Storage volume and inundation footprints are based on a preliminary assessment only. Further survey will be required to confirm levels during detailed design.
- The dam orifice diameter is 1450 mm to control the rate of discharge during events up to and including the 100 year ARI storm.
- For the purpose of cost estimating, geotechnical conditions are assumed to be one metre depth of soil overlying rock. Further survey and geotechnical investigations are required to properly assess the foundation conditions.
- The form of dam, as part of a feasibility design and estimated construction cost, would be based on detailed survey and further investigation of foundation conditions and spillway arrangements.
- Construction of the dam would require the relocation of the existing Brown Hill Creek Road to
 move the road further up the hill on the side of the valley to above the 100 year ARI storage level.

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

- The configuration of the dam is such that the acquisition of any private property will be avoided and the nearby residences would not be affected during any flooding up to and beyond the 100 year ARI event, subject to further design.
- Estimated cost was approximately **\$10.3 Million**.

The 2006 Master Plan identified that flood control dams on upper Brown Hill Creek would be potentially classified as "High C" under the ANCOLD *Guidelines on Assessment of the Consequences of Dam Failure (2000)*. Subject to determination of the downstream population at risk, the classification could increase to "High A". Accordingly, implementation of this option would have to satisfy a certain level of technical design, with minimum spillway capacities and ongoing surveillance requirements. A comprehensive assessment will be required during the feasibility design phase to confirm the correct classification and associated design parameters.

Passage of the Probable Maximum Flood (*PMF*), which is several times larger than in the 100 year ARI flood, will be a critical design consideration for the dam and development of a suitable spillway design will be a challenging aspect.

A hybrid form of construction may be possible, using a concrete core but with more aesthetic protection works on both sides (*e.g. grass covered earth, large rock or mattresses of wire mesh filled with rock*). A concrete core would allow spillway discharge over a portion of the dam itself onto part of the downstream face of the dam covered with appropriately designed aesthetic protection works. Such an arrangement would have capacity to convey significant flow up to say the 2,000 year ARI event. In the event of a larger flood up to the PMF, the remainder of the "aesthetic" protection works would be sacrificed, but the concrete core would remain intact.

Consultation is required with the Department for Environment, Water and Natural Resources as custodian of the Recreation Park, and also with a range of community and local interest groups.

Relevant Commonwealth and State approvals are required concerning any action that may have a significant impact on the ecology and natural resources of the area, and appropriate studies will need to be undertaken in conjunction with feasibility designs.

Project works may provide opportunity to clear undesirable exotic plant species and enhance the remnant native vegetation.

The location of the dam in the Recreation Park is a sensitive issue for the local community due to perceived threat to the natural value of the area, particularly in terms of recreational, heritage, environmental, visual and aesthetic aspects.

It is proposed that the dam is positioned as shown in **Figure 20** at a "pinch-point" in a steeper section of the valley so that the width of the dam can be minimised. A view of the proposed location is shown overleaf, looking upstream. Suitable vegetation on or about the structure, subject to its form, should help to minimise any visual and aesthetic concerns

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

View looking upstream to site of proposed flood control dam at Site 1

K1.2 MINOR CHANNEL WORKS AND BRIDGE UPGRADES IN MITCHAM

The proposed dam at Site 1 would help to reduce the peak 100 year ARI flows through areas of Mitcham by up to 8.5 m³/s (*refer* **Table 9**), with peak flows being limited to about 20 m³/s. This is expected to largely confine flow to the channel or immediate overbank areas.

Notwithstanding, cursory inspections of the channel at areas upstream from Mitcham shopping centre have identified that relatively minor works could be undertaken at some noticeable "choke points" to help increase the channel capacity and thereby further reduce local flood risk.

The scope of works would need to be confirmed through more detailed assessment of hydraulic capacity of the channel, but it is proposed that they could include the following:

- Removal of trees and overgrowth within the channel likely to restrict the passage of flow.
- Minor regrading works in the approaches to bridges/culverts at Fife and Ayr Avenue.
- High-flow bypass at a localised constriction in the channel near Paisley Avenue.

A nominal estimated cost for these works is about **\$0.8 Million**.

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

It is understood that the City of Mitcham currently plans to upgrade the bridge at George Street for the purpose of structural integrity. It is recommended that the hydraulic design capacity of the bridge be increased from 18 to 25 m^3 /s to convey the 100 year ARI flow for the case that the flood control dam at Site 1 is implemented.

K1.3 BROWN HILL CREEK CHANNEL UPGRADE BETWEEN HAMPTON STREET AND CROSS ROAD

Hampton Street to Cross Road is a known breakout point for storm flows down Brown Hill Creek. The channel upstream of Cross Road has insufficient capacity and spillage into the immediate overbank area occurs during events larger than the 10 year ARI flood, causing localised flooding of dwellings along Denning Street. During events larger than the 20 year ARI flood the breakout flow is expected to travel further afield through downstream suburbs.

Upgrading this section of channel would ideally contain flow within the channel up to the equivalent capacity of the Hampton Street and Cross Road bridges (*both about 30 m³/s*).

In the 2006 Master Plan a channel upgrade between these bridges was designed to have capacity of about 25 m³/s, due to the reduction in peak flows during the 36 hour storm provided by the two flood control dams that were originally proposed.

A concept design drawing for the 2006 Master Plan upgrade is provided in **Appendix L**. It involves the replacement and upgrade of about 250 metres of concrete-lined channel with dimensions of 4 metres base width and 2 metres height. The concept design also allowed for transitioning of the height to 3 metres over a distance of 50 metres upstream from the bridge at Cross Road.

In light of the revised configuration for upper catchment detention with only a single flood control dam at Site 1, the peak 100 year ARI 36 hour flow at Cross Road is expected to be about 28 m^3 /s (*refer* **Table 9**), which is an increase of 3 m^3 /s above the flow with two dams.

A basic hydraulic review of the original concept design indicates that it should be able to accommodate the increased flow of 28 m³/s and hence, no alteration to the design would be required.

It is recommended that detailed survey be undertaken as part of detail design to confirm existing levels and finalise the configuration of the upgrade. An easement over or channel acquisition from the affected properties will also be required.

The cost of construction of the channel upgrade was estimated to be approximately \$2.7 Million.

K1.4 HIGH-FLOW BYPASS CULVERT BETWEEN MALCOLM STREET AND THE GLENELG TRAMWAY

The 100 year ARI flow at Malcolm Street is expected to be about 28 m³/s in the case of both the critical 90 minute storm and the 36 hour storm, as "throttled" back by the proposed dam at Site 1.

Removal of 12 m³/s from the peak flow and diversion to a downstream location using a high-flow bypass culvert would reduce the residual load on the downstream channel to less than 18 m³/s, which is typically within the flow capacity of the channel. Accordingly, the diversion of flow through the culvert would ideally eliminate potential breakouts between the culvert off-take and inflow points.

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

However, the following design and estimated cost are subject to review as a result of findings of the Channel Capacity Assessment (*AWE*, 2012) and the proposed Goodwood Junction Railway Project.

The concept for the proposed high-flow bypass is as follows (*refer* **Figure 21**):

- Installation of a 1670 metre long 1.8m (W) x 1.5m (H) box culvert between Malcolm Street and the Glenelg Tramway. The overall grade between these points is 0.67%, which will provide a culvert capacity of more than 10 m³/s.
- The off-take point from the channel would take advantage of the angle of the creek alignment to Malcolm Street in that flows will not be forced to make a 90 degree or more acute bend as they are fed into the bypass culvert, thereby offering better hydraulic efficiency than at other locations.
- The point of return to the channel would be on the upstream side of the Glenelg Tramway, near the northern end of Foster Street. Works will be required to increase the capacity of the culvert beneath the tramway.
- The proposed route for the culvert would follow Malcolm Street onto Vardon Terrace, then cross Goodwood Road and track west and then north along Arundel Avenue. After crossing the railway line at Cranbrook into Chelmsford Avenue, the culvert would turn north into Oakley Avenue, then west into Victoria Street and then north again along Foster Street.
- This alignment follows existing roadways or other public land so as to avoid private property
 incursion. Existing sewer and water supply services have been reviewed to determine that for
 most of the route the installation of the 1.8 m wide culvert will be feasible. Further modification
 and revision of the route may be required to avoid some services in the vicinity of the Goodwood
 Road underpass. It is envisaged that an appropriate alternative alignment would be readily
 available.

It was estimated that the cost of these works would be approximately **\$11.3 Million**.

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Appendix L - Concept Design Plans for Structural Flood Mitigation Works
BROWN HILL KESWICK CREEK

PROJECT UPDATE

March 2011

STORMWATER MANAGEMENT IN THE SOUTH PARK LANDS

This update outlines the status of stormwater management in the South Park Lands which is a part of the Brown Hill Keswick Creek Stormwater Project.

Technical investigations and preliminary consultation with stakeholders resulted in the completion of a feasibility study during 2010. This study confirmed that the flood risk from large storms (such as the 1 in 100 year storm) could be reduced downstream of the Park Lands by using three areas for temporary flood storage. The three areas are:

- North-west corner of Glenside Campus
- Southern part of Victoria Park in the area identified in the Victoria Park Master Plan as a site for stormwater wetlands
- Southern part of Park 20 (between Peacock and Unley Roads)

In addition to flood reduction, the feasibility study identified opportunities for water quality improvement, stormwater harvesting and environmental and recreational enhancement.

Concept Design

The following pages outline the primary design features proposed for the three areas in response to outcomes from the previous feasibility study.

Key Concept Design Features

The most desired elements for the project identified from the stakeholder interviews and workshop include:

- Reduce flood risk downstream of Greenhill Road
- **Utilise** the existing gross pollutant trap in Glenside site and construct an enlarged sedimentation basin to improve the quality of water entering the South Park Lands
- **Divert** stormwater flow out of Parklands Creek and through a series of ephemeral wetlands in the southern portion of Victoria Park. The wetlands will slow down water flow and provide further treatment prior to returning water back into Parklands Creek
- **Improve** the biodiversity of each site through the inclusion of native vegetation and habitat opportunities
- **Provide** an alternative water flow path in Park 20 to reduce the erosion of Parklands Creek and control the release of water under Greenhill Road
- **Provide** temporary flood storage in the Glenside site, at the wetlands in Victoria Park and in Park 20
- **Enhance** amenity and recreational opportunities for the southern part of Victoria Park

() North

NOTES

- 1. Perimeter footpath
- 2. Open water
- 3. Shallow marsh 4. Deep marsh
- 5. Sports fields
- 6. Carpark
- 7. Shelter + viewing deck
- 8. Running track
- 9. Diversion weir
- 10. Spillway
- 11. Outlet
- 12. Environmental flow

LEGEND

6. New creek convergence

Next Steps of the Project

- **Consultation** will soon be underway to inform and review the conceptual layouts and water movement models with stakeholders, agencies and the wider community to gain feedback on the primary design features proposed for the parks.
- **Finalisation** of the concept. The project team will review the feedback gained through consultation and finalise the concept plan during mid 2011.
- **Implementation** of the proposal is subject to approvals and funding commitment from project proponents.

For enquiries please contact the project manager Keith Downard on 8273 3100 or keith.downard@tonkin.com.au

Α3 ASR 'INJECTION' LINE TO SECOND BORE ADJACENT GLEN OSMOND ROAD PLATPEDTO BOARDWALK OVER TREATMENT BIORE TENTION AREA PLANT 20L/s P 0.75m HIGH WALL 11 11930 AHD TOB 119.60 AHD BYORE TENTION AREA FLAT BASE 350m², 300mm DEEP BATTERS TO NS 1 in 6 TO 1 in 8 YIELD = 60ML/a BETAINING WALL 0,75m HIGH 27m LONG DRAWN BY: ESIGNED BY STORMWATER HARVESTING MJB DRAWING DATE: CHECKED: & TREATMENT 23.08.11 CONCEPT DESIGN SCALE: AS SHOWN PROJECT No. DRAWING No. 11143 Figure 6 D

6. CHANNEL TO BE LOCATED CENTRALLY, WHERE APPROPRIATE TO FIT WITHIN EXISTING DRAINAGE CORRIDOR.

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Appendix M - Benefit-Cost Analysis for Stormwater Management Strategy (Part A + Part B)

2012 STORMWATER MANAGEMENT PLAN (PART A + PART B WORKS)

Values in \$ '000 (Real Terms)	Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	24	25	26	27	28	29	30
		2012/13	2013/14	2014/15	2015/16	2016/17	2017/18	2018/19	2019/20	2020/21	2021/22	2022/23	2023/24	2024/25	2025/26	2035/36	2036/37	2037/38	2038/39	2039/40	2040/41	2041/42
Benefits (Damage Reduction)		-	-	1,000	1,000	4,000	4,000	5,000	5,000	7,000	7,000	8,968	8,968	8,968	8,968	8,968	8,968	8,968	8,968	8,968	8,968	8,968
Costs	Previous	Future																				
Ridge Park Detention System	30	972	57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
South Park Lands Detention System	373	175	7,600	7,600	1,889	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lower Brown Hill Creek Channel Upgrade		435	500	12,500	17,500	15,000	3,197	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Keswick Creek Diversion Culverts	131	-	-	100	650	5,500	12,000	10,000	3,470	-	-	-	-	-	-	-	-	-	-	-	-	-
Anzac Hwy to Forestville Reserve Channel Upgrade (No Dam Scenario)		-	-	-	50	300	5,500	7,500	1,530	-	-	-	-	-	-	-	-	-	-	-	-	-
Bypass Culvert at Fisher St		-	-	-	-	-	-	200	3,000	1,345	-	-	-	-	-	-	-	-	-	-	-	-
Dam at Site 1 (12 m Spillway Height)	160	-	-	-	-	-	300	1,000	5,000	3,000	1,304	-	-	-	-	-	-	-	-	-	-	-
High-Flow Bypass Culvert (Malcolm St to Tramway)		-	-	-	-	-	200	1,500	5,500	5,500	1,410	-	-	-	-	-	-	-	-	-	-	-
Hampton St to Cross Rd Channel Upgrade		-	-	-	-	-	-	-	-	100	2,689	-	-	-	-	-	-	-	-	-	-	-
Minor Channel Works in Mitcham		-	-	-	-	-	-	-	-	100	706	-	-	-	-	-	-	-	-	-	-	-
Maintenance (0.2% of CAPEX to previous 2 yrs)		-	-	5	21	61	102	143	186	226	263	283	295	295	295	295	295	295	295	295	295	295
SMP Administration Costs	915	230	230	230	230	230	230	230	230	200	150	150	150	150	150	150	150	150	150	150	150	150
SMP Study and Consultation	730	125	50																			
Total Costs	2,339	1,937	8,437	20,435	20,340	21,091	21,529	20,573	18,916	10,471	6,522	433	445	445	445	445	445	445	445	445	445	445
Net Balance		- 1,937	- 8,437	- 19,435	- 19,340	- 17,091	- 17,529	- 15,573	- 13,916	- 3,471	478	8,535	8,523	8,523	8,523	8,523	8,523	8,523	8,523	8,523	8,523	8,523
Present value of Benefits		68,783																				

Tresent value of benefits	00,705
Present value of Costs	105,985
Net Present Value	- 37,202
Internal rate return (%)	2.6%
Benefit Cost Ratio	0.65
Real Discount Rate (%)	7%

Note:

Previous expenditure includes allowance for previous design work, particularly for South Park Lands and Keswick Creek Diversion Dollar values as at December 2011 (indicative of start of 2012)

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

1

Worley Parsons

resources & energy

Method reviewed and Template provided by

THE CITIES OF ADELAIDE, BURNSIDE, MITCHAM, UNLEY AND WEST TORRENS BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Appendix N - Benefit-Cost Analysis for Part A Works

PART A WORKS

Values in \$ '000 (Real Terms)	Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	24	25	26	27	28	29	30
		2012/13	2013/14	2014/15	2015/16	2016/17	2017/18	2018/19	2019/20	2020/21	2021/22	2022/23	2023/24	2024/25	2025/26	2035/36	2036/37	2037/38	2038/39	2039/40	2040/41	2041/42
Benefits (Damage Reduction)		-	-	1,000	1,000	2,000	2,000	4,000	4,000	7,000	7,727	7,727	7,727	7,727	7,727	7,727	7,727	7,727	7,727	7,727	7,727	7,727
Costs	Previous	Future																				
Ridge Park Detention System	30	972	57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
South Park Lands Detention System	373	175	7,600	7,600	1,889	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lower Brown Hill Creek Channel Upgrade		435	500	12,500	17,500	15,000	3,197	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Keswick Creek Diversion Culverts	131	-	-	100	650	5,500	12,000	10,000	3,470	-	-	-	-	-	-	-	-	-	-	-	-	-
Anzac Hwy to Forestville Reserve Channel Upgrade (No Dam Scenario)		-	-	-	50	300	5,500	7,500	1,530	-	-	-	-	-	-	-	-	-	-	-	-	-
Bypass Culvert at Fisher St		-	-	-	-	-	-	200	3,000	1,345	-	-	-	-	-	-	-	-	-	-	-	-
Maintenance (0.2% of CAPEX to previous 2 yrs)		-	-	4	21	61	101	143	184	220	236	238	238	238	238	238	238	238	238	238	238	238
SMP Administration Costs	915	230	230	230	230	230	230	230	230	200	150	150	150	150	150	150	150	150	150	150	150	150
SMP Study and Consultation	730	125	50																			
Total Costs	2,179	1,937	8,437	20,434	20,340	21,091	21,028	18,073	8,414	1,765	386	388	388	388	388	388	388	388	388	388	388	388
Net Balance		- 1,937	- 8,437	- 19,434	- 19,340	- 19,091	- 19,028	- 14,073	- 4,414	5,235	7,341	7,339	7,339	7,339	7,339	7,339	7,339	7,339	7,339	7,339	7,339	7,339

Present value of Benefits	58 <i>,</i> 506
Present value of Costs	89 <i>,</i> 826
Net Present Value	- 31,320
Internal rate return (%)	2.9%
Benefit Cost Ratio	0.65
Real Discount Rate (%)	7%

Note:

Previous expenditure includes allowance for previous design work, particularly for South Park Lands and Keswick Creek Diversion Dollar values as at December 2011 (indicative of start of 2012)

BROWN HILL KESWICK CREEK DRAFT STORMWATER MANAGEMENT PLAN

Method reviewed and Template provided by

